K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2023

Ta có tập nghiệm của phương trình là:

\(\left(x+2\right)\left(2x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\2x-1=0\\x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\2x=1\\x=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{2}\\x=3\end{matrix}\right.\)

Tập hợp S là:

\(S=\left\{-2;\dfrac{1}{2};3\right\}\)

Lần lược các phương án:

A. \(-2\in S\) (đúng)

B. \(3\in S\) (đúng)

C. \(2\in S\) (Sai)

D. \(\dfrac{1}{2}\in S\) (Đúng)

⇒ Chọn C

3 tháng 3 2022

B nhá bạn 

28 tháng 2 2017

Đáp án: C

6 tháng 11 2018

câu 4 \(\sqrt{x^2-2x}=\sqrt{2x-x^2}\Leftrightarrow x^2-2x=2x-x^2\)

\(\Leftrightarrow2\left(x^2-2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

câu C

Câu 5 \(x\left(x^2-1\right)\sqrt{x-1}=0\)

ĐK \(x\ge1\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\sqrt{x-1}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\\sqrt{x-1}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nh\right)\\x=-1\left(l\right)\end{matrix}\right.\)

vậy pt có 1 nghiệm

câu B

16 tháng 3 2022

bạn có thể giúp mk giải theo kiểu tự luận đc ko ạ

 

2: \(\text{Δ}=1^2-4\cdot\left(-1\right)\cdot\left(-m\right)=1-4m\)

Để bất phương trình vô nghiệm thì \(\left\{{}\begin{matrix}1-4m< 0\\-1< 0\end{matrix}\right.\Leftrightarrow m>\dfrac{1}{4}\)

NV
13 tháng 12 2020

1.

\(2x+1\ge0\Rightarrow x\ge-\dfrac{1}{2}\)

Khi đó pt đã cho tương đương:

\(x^2+2x+2m=\left(2x+1\right)^2\)

\(\Leftrightarrow x^2+2x+2m=4x^2+4x+1\)

\(\Leftrightarrow3x^2+2x+1=2m\)

Xét hàm \(f\left(x\right)=3x^2+2x+1\) trên \([-\dfrac{1}{2};+\infty)\)

\(-\dfrac{b}{2a}=-\dfrac{1}{3}< -\dfrac{1}{2}\)

\(f\left(-\dfrac{1}{2}\right)=\dfrac{3}{4}\) ; \(f\left(\dfrac{1}{3}\right)=\dfrac{2}{3}\)

\(\Rightarrow\) Pt đã cho có 2 nghiệm pb khi và chỉ khi \(\dfrac{2}{3}< 2m\le\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{1}{3}< m\le\dfrac{3}{8}\)

\(\Rightarrow P=\dfrac{1}{8}\)

NV
13 tháng 12 2020

3.

Đặt \(x^2=t\ge0\Rightarrow\left[{}\begin{matrix}x=\sqrt{t}\\x=-\sqrt{t}\end{matrix}\right.\)

Pt trở thành: \(t^2-3mt+m^2+1=0\) (1)

Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=9m^2-4\left(m^2+1\right)>0\\t_1+t_2=3m>0\\t_1t_2=m^2+1>0\end{matrix}\right.\) \(\Rightarrow m>\dfrac{2}{\sqrt{5}}\)

Ta có:

\(M=x_1+x_2+x_3+x_4+x_1x_2x_3x_4\)

\(=-\sqrt{t_1}-\sqrt{t_2}+\sqrt{t_1}+\sqrt{t_2}+\left(-\sqrt{t_1}\right)\left(-\sqrt{t_2}\right)\sqrt{t_1}.\sqrt{t_2}\)

\(=t_1t_2=m^2+1\) với \(m>\dfrac{2}{\sqrt{5}}\)

NV
10 tháng 5 2020

1.

- Với \(x\ge\frac{1}{2}\Rightarrow2x-1\le x+2\Rightarrow x\le3\Rightarrow\frac{1}{2}\le x\le3\)

- Với \(x< \frac{1}{2}\Rightarrow1-2x\le x+2\Rightarrow3x\ge-1\Rightarrow x\ge-\frac{1}{3}\)

Vậy nghiệm của BPT là \(-\frac{1}{3}\le x\le3\)

2.

Để pt có 2 nghiệm trái dấu

\(\Leftrightarrow ac< 0\Leftrightarrow\left(m+2\right)\left(2m-3\right)< 0\Rightarrow-2< m< \frac{3}{2}\)

3.

\(5x-1>\frac{2x}{5}+3\Leftrightarrow5x-\frac{2x}{5}>4\Leftrightarrow\frac{23}{5}x>4\Rightarrow x>\frac{20}{23}\)

4.

\(4x^2+4x+1-3x+9>4x^2+10\)

\(\Leftrightarrow x>0\)

5.

\(1< \frac{1}{1-x}\Leftrightarrow\frac{1}{1-x}-1>0\Leftrightarrow\frac{x}{1-x}>0\Rightarrow0< x< 1\)

6.

\(\frac{\left(x-5\right)^2\left(x-3\right)}{x+1}\le0\Rightarrow\left[{}\begin{matrix}x=5\\-1< x\le3\end{matrix}\right.\)

10 tháng 5 2020

K hiểu c3 cho lắm sao có 23/5 .Giải thích đc k bạn.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Vì \({13^2} - 24.13 + 143 = 0\) nên \(x = 13\) là nghiệm của phương trình \( \Rightarrow 13 \in S\)

Vậy mệnh đề “\(13 \in S\)” đúng.

b) Vì \({11^2} - 24.11 + 143 = 0\) nên \(x = 11\) là nghiệm của phương trình \( \Rightarrow 11 \in S\)

Vậy mệnh đề “\(11 \notin S\)” sai.

c) Ta có:

 \(\begin{array}{l}{x^2} - 24x + 143 = 0\\ \Leftrightarrow {x^2} - 11x - 13x + 11.13 = 0\\ \Leftrightarrow x.\left( {x - 11} \right) - 13.\left( {x - 11} \right) = 0\\ \Leftrightarrow \left( {x - 11} \right).\left( {x - 13} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 11\\x = 13\end{array} \right.\end{array}\)

Tập nghiệm của phương trình là \(S=\{11;13\}\)

Phương trình có 2 nghiệm hay \(n\;(S) = 2\)

=> Mệnh đề “\(n\;(S) = 2\)” đúng.