K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 2: 

\(B=\left(\dfrac{\sqrt{x}\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}+3}{\sqrt{x}-1}\right)\cdot\dfrac{x-1}{2x+2\sqrt{x}-\sqrt{x}-1}\)

\(=\left(\dfrac{\sqrt{x}+\sqrt{x}+3}{\left(\sqrt{x}-1\right)}\right)\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}\)

\(=\dfrac{2\sqrt{x}+3}{2\sqrt{x}-1}\)

Để B<0 thì \(2\sqrt{x}-1< 0\)

=>\(2\sqrt{x}< 1\)

=>0<x<1/4

14 tháng 10 2017

câu hỏi?

2 tháng 7 2017

=(2^2-1)*(2^2+1)*(2^4+1)*...*(2^64+1)
=(2^4-1)(2^2+1)*(2^4+1)*...*(2^64+1)
=(2^8-1)(2^8+1)*...*(2^64+1)
=...
=(2^64-1)(2^64+1)
=2^128-1

mk vua lm ra do!!!!!!

2 tháng 7 2017

tks bạn nhưng mk làm ra lâu rồi sorry nha 

(mặc dù mk vẫn tk cho bạn)

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: \(AM=\dfrac{AB\cdot AC}{BC}=9.6\left(cm\right)\)

\(BM=\dfrac{AB^2}{BC}=7.2\left(cm\right)\)

c: Xét ΔAMC vuông tại M có \(AM^2+MC^2=AC^2\)

nên \(AM^2=AC^2-MC^2\left(1\right)\)

Xét ΔAMB vuông tại M có ME là đường cao

nên \(AE\cdot AB=AM^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AC^2-MC^2\)

12 tháng 9 2021

\(a,M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{2}{x}-\dfrac{2-x}{x\sqrt{x}+x}\right)\left(x>0;x\ne1\right)\\ M=\dfrac{x+\sqrt{x}+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{2\sqrt{x}+2-2+x}{x\left(\sqrt{x}+1\right)}\\ M=\dfrac{2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{x\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\\ M=\dfrac{2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(b,M=-\dfrac{1}{2}\Leftrightarrow\dfrac{2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=-\dfrac{1}{2}\\ \Leftrightarrow-4x=x+\sqrt{x}-2\\ \Leftrightarrow5x+\sqrt{x}-2=0\)

Đặt \(\sqrt{x}=t\)

\(\Leftrightarrow5t^2+t-2=0\\ \Delta=1^2-4\cdot5\left(-2\right)=41\\ \Leftrightarrow\left[{}\begin{matrix}t=\dfrac{-1-\sqrt{41}}{10}\\t=\dfrac{-1+\sqrt{41}}{10}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\left(1+\sqrt{41}\right)^2}{100}=\dfrac{-42-2\sqrt{41}}{100}\\x=\dfrac{\left(\sqrt{41}-1\right)^2}{100}=\dfrac{42-2\sqrt{41}}{100}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-21-\sqrt{41}}{50}\left(L\right)\\x=\dfrac{21-\sqrt{41}}{50}\left(N\right)\end{matrix}\right.\\ \Leftrightarrow x=\dfrac{21-\sqrt{41}}{50}\)

a: Ta có: \(M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{2}{x}+\dfrac{x-2}{x\sqrt{x}+x}\right)\)

\(=\dfrac{x+\sqrt{x}+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{2\sqrt{x}+2+x-2}{x\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2x}{\sqrt{x}-1}\cdot\dfrac{x}{\sqrt{x}\left(\sqrt{x}+2\right)}\)

\(=\dfrac{2x\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)