Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
$|x|\geq 25\Rightarrow x\geq 25$ hoặc $x\leq -25$
Bài 2:
$S_1=1+[(-3)+5]+[(-7)+9]+...+[(-15)+17]$
$=1+2+2+....+2$
Số lần xuất hiện của 2 là: $[(17-3):2+1]:2=4$
$\Rightarrow S_1=1+2.4=9$
-------------------------
$S_2=(-2)+[4+(-6)]+[8+(-10)]+...+[16+(-18)]$
$=(-2)+(-2)+(-2)+...+(-2)$
Số lần xuất hiện của -2 là:
$[(18-4):2+1]:2+1=5$
$\Rightarrow S_2=(-2).5=-10$
$S_1+S_2=9+(-10)=-1$
1/a) Ta có: \(A=x^4+\left(y-2\right)^2-8\ge-8\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
Vậy GTNN của A = -8 khi x=0, y=2.
b) Ta có: \(B=|x-3|+|x-7|\)
\(=|x-3|+|7-x|\ge|x-3+7-x|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le7\end{cases}}\Rightarrow3\le x\le7\)
Vậy GTNN của B = 4 khi \(3\le x\le7\)
2/ a) Ta có: \(xy+3x-7y=21\Rightarrow xy+3x-7y-21=0\)
\(\Rightarrow x\left(y+3\right)-7\left(y+3\right)=0\Rightarrow\left(x-7\right)\left(y+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=7\\y=-3\end{cases}}\)
b) Ta có: \(\frac{x+3}{y+5}=\frac{3}{5}\)và \(x+y=16\)
Áp dụng tính chất bằng nhau của dãy tỉ số, ta có:
\(\frac{x+3}{y+5}=\frac{3}{5}\Rightarrow\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+y+8}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x+3}{3}=3\Rightarrow x+3=9\Rightarrow x=6\\\frac{y+5}{5}=3\Rightarrow y+5=15\Rightarrow y=10\end{cases}}\)
Bài 3: đề không rõ.
Bài 1:\(a,A=x^4+\left(y-2\right)^2-8\)
Có \(x^4\ge0;\left(y-2\right)^2\ge0\)
\(\Rightarrow A\ge0+0-8=-8\)
Dấu "=" xảy ra khi \(MinA=-8\Leftrightarrow x=0;y=2\)
\(b,B=\left|x-3\right|+\left|x-7\right|\)
\(\Rightarrow B=\left|x-3\right|+\left|7-x\right|\)
\(\Rightarrow B\ge\left|x-3+7-x\right|\)
\(\Rightarrow B\ge\left|-10\right|=10\)
Dấu "=" xảy ra khi \(MinB=10\Leftrightarrow3\le x\le7\Rightarrow x\in\left(3;4;5;6;7\right)\)
S1+S2=(1-2-3+4)+(5-6-7+8)+(9-10-11+12)+(13-14-15+16)+17-18
= 0 + 0 + 0 + 0 +17-18
=-1
B = 3 - 32 + 33 - 34 + ...... + 31999 - 32000
=> 3B = 32 - 33 + 34 - 35 + ...... + 32000 - 32001
=> 3B + B = 4B = 3 - 32001
=> 32001 = 3 - 4B
Vậy n = 2001B = 3 - 32 + 33 - 34 + ...... + 31999 - 32000
=> 3B = 32 - 33 + 34 - 35 + ...... + 32000 - 32001
=> 3B + B = 4B = 3 - 32001
=> 32001 = 3 - 4B
Vậy n = 2001