K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1:

a: Khi x=3 thì \(A=\dfrac{3-6}{3+2}=\dfrac{-3}{5}\)

b: \(B=\dfrac{6}{x-2}+\dfrac{x}{x+2}-\dfrac{8}{x^2-4}\)

\(=\dfrac{6}{x-2}+\dfrac{x}{x+2}-\dfrac{8}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{6\left(x+2\right)+x\left(x-2\right)-8}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{6x+12+x^2-2x-8}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x^2+4x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x+2}{x-2}\)

c: \(P=A\cdot B=\dfrac{x+2}{x-2}\cdot\dfrac{x-6}{x+2}=\dfrac{x-6}{x-2}\)

P=3/2

=>\(\dfrac{x-6}{x-2}=\dfrac{3}{2}\)

=>\(3\left(x-2\right)=2\left(x-6\right)\)

=>3x-6=2x-12

=>x=-6(nhận)

Câu 2:

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC=\sqrt{18^2+24^2}=30\left(cm\right)\)

b: Xét ΔBHA vuông tại H và ΔBAC vuông tại A có

\(\widehat{HBA}\) chung

Do đó: ΔBHA~ΔBAC

31 tháng 3 2019

CÂU 1:

a) \(2x+4+x^2=-2x+x-3x+2x\)

\(\Leftrightarrow2x+4+x^2=-2x\)

\(\Leftrightarrow x^2+4x+4=0\)

\(\Leftrightarrow\left(x+2\right)^2=0\)

\(\Leftrightarrow x+2=0\)

\(\Leftrightarrow x=-2\)

b) \(2x^2-5x-x=x^2+6x\)

\(\Leftrightarrow2x^2-5x-x-x^2-6x=0\)

\(\Leftrightarrow3x^2-12x=0\)

\(\Leftrightarrow3x\left(x-4\right)=0\)

Hoặc \(3x=0\Leftrightarrow x=0\)

Hoặc \(x-4=0\Leftrightarrow x=4\)

Câu 1: Cho tam giác ABC vuông tại A ,đường cao AH a) Cho biết HB=9cm,HC=16cm.Tính các độ dài AH,AB=AC b) Chứng minh các hệ thức AH2=HB.HC,AB2=BC.BH Câu 2: Tam giác ABC vuông tại A, đường cao AH, HB=4cm,HC=9cm.Gọi M là trung điểm của BC. Tính các cạnh của tam giác AHM .Câu3: Cho tam giác ABC vuông tại A . Hình vuông MNPQ có M thuộc cạnh AB,N thuộc cạnh AC ,P và Q thuộc cạnh BC . Biết BQ=4cm,CP=9cm. Tính cạnh của...
Đọc tiếp

Câu 1: Cho tam giác ABC vuông tại A ,đường cao AH 

a) Cho biết HB=9cm,HC=16cm.Tính các độ dài AH,AB=AC 

b) Chứng minh các hệ thức AH2=HB.HC,AB2=BC.BH 

Câu 2: Tam giác ABC vuông tại A, đường cao AH, HB=4cm,HC=9cm.Gọi M là trung điểm của BC. Tính các cạnh của tam giác AHM .

Câu3: Cho tam giác ABC vuông tại A . Hình vuông MNPQ có M thuộc cạnh AB,N thuộc cạnh AC ,P và Q thuộc cạnh BC . Biết BQ=4cm,CP=9cm. Tính cạnh của hình vuông. 

Câu 4: Tam giác ABC đường cao AH (H thuộc cạnh BC) có AH=6cm,BH=4cm,HC=9cm. Chứng minh rằng: 

a) Tam giác AHB đồng dạng với tam giác CHA .

b) BAC = 90o 

Câu 5: Cho tam giác ABC, các đường cao BD và CE. Chứng minh rằng : AE.AB=AD.AC 

Câu 6: Cho hình thang ABCD (AB//CD) , M là trung điểm của AD,H là hình chiếu của M ten BC. Chứng minh rằng:Diện tích hình thang bằng tích BC.MH bằng cách vẽ đường cao BK, gọi N là trung điểm của BC và tìm các tam giác đồng dạng 

Câu 7: Cho tam giác nhọn ABC , các đường cao BD và CE cắt nhau ở H . Gọi K là hình chiếu của H trên BC . Chứng minh rằng : 

a) BH.BD=BK.BC

b) CH.CE=CK.CB

c) BH.BD+CH.CE=BC2 

Câu 8: Cho hình bình hành ABCD (A<B) . Gọi E là hình chiếu của C trên AB, K là hình chiếu của C trên AD, H là hình chiếu của B trên AC. Chứng minh rằng : 

a) AB.AE=AC.HC

b) BC. AK=AC.HC

c) AB.AE+AD.AK=AC2 

3
13 tháng 7 2015

sao nhiều quá vậy cậu dăng như này nhìn đã thấy ngán rồi chẳng ai làm đâu

19 tháng 6 2016

nhieu

5 tháng 5 2021

Bài 1 :

a, Xét tam giác BDA và tam giác KDC có:     

 Góc BDA= Góc KDC(đối đỉnh)

 Góc B= Góc K(90 độ)

=>Tam giác BDA đồng dạng với tam giác KDC(g.g)

b, 

Tam giác BDA đồng dạng với tam giác KDC ( cmt) => \(\frac{DB}{DA}=\frac{DK}{DC}\)

Xét tam giác DBK và tam giác DAC có:   

  Góc BDK= Góc DAC(đối đỉnh)

\(\frac{DB}{DA}=\frac{DK}{DC}\)

=>Tam giác DBK đồng dạng với tam giác DAC(c.g.c)

Bài 2 :

a) Xét tam giác ABH và tam giác AHD có:

\(\widehat{A}chung\)

\(\widehat{AHB}=\widehat{ADH}=90^o\)

 tam giác ABH đồng dạng với tam giác AHD (g-g)

b)T/tự: tam giác AHC đồng dạng với tam giác AEH (g-g)

⇒ \(\widehat{ACH}=\widehat{AHE}\) ( 2 góc tương ứng)

Tam giác AEH đồng dạng với tam giác HEC 

\(\widehat{ACH}=\widehat{AHE}\) (CM trên)

\(\widehat{AEH}=\widehat{HEC}\) (= 900)

\(\frac{AE}{HE}=\frac{EH}{EC}\)\(AE\cdot EC=EH\cdot EH=EH^2\)

c) tam giác ADC đồng dạng với tam giác ABE (g-g) vì:

\(\widehat{A}\) chung

\(\widehat{ADC}=\widehat{AEB}=90^O\)

 \(\widehat{ACD}=\widehat{ABE}\) ( 2 góc tương ứng)

Xét tam giác DBM và tam giác ECM có:

\(\widehat{ACD}=\widehat{ABE}\) (CM trên)

\(\widehat{DMB}=\widehat{EMC}\) (đối đỉnh)

 tam giác DBM đồng dạng với tam giác ECM (g-g)

 Bài 3 :

Bạn tự vẽ hình rồi đối chiếu kq nhé, có thể có sai sót đấy, ko chắc đúng hết đâu

Câu 1 : thực hiện phép tính saua,(x-3)(x^2+3x+9)-(x^3+3)                b,(5x^2-10x):5x+(5x+2)^2:(5x+2)c5x/3+5x+3/5x+3Câu 2: cho biểu thức p=2a^2/a^2-1+a/a+1-a/a-1a, tìm a để biểu thức p có nghĩa .Rút gọn pb,tính giá trị biểu thức p tại x=2017;x=1c,tìm các giá trị nguyên của x để  p nhận giá trị nguyênCâu 3 cho hình chữ nhật ABCD. Gọi H là chân đường vuông góc kẻ từ A đến BD .gọi Mvà N theo thứ tự là trung...
Đọc tiếp

Câu 1 : thực hiện phép tính sau

a,(x-3)(x^2+3x+9)-(x^3+3)                b,(5x^2-10x):5x+(5x+2)^2:(5x+2)

c5x/3+5x+3/5x+3

Câu 2: cho biểu thức p=2a^2/a^2-1+a/a+1-a/a-1

a, tìm a để biểu thức p có nghĩa .Rút gọn p

b,tính giá trị biểu thức p tại x=2017;x=1

c,tìm các giá trị nguyên của x để  p nhận giá trị nguyên

Câu 3 cho hình chữ nhật ABCD. Gọi H là chân đường vuông góc kẻ từ A đến BD .gọi Mvà N theo thứ tự là trung điểm của các đoạn AH và DH

a, chứng minh MN song song với AD 

b,gọi I là trung điểm của cạnh BC .Chứng minh tứ giác BMNI là hình bình hành

c, chứng minh tam giác ANI tại N

Câu 4; a , tìm X biết :(X^4+2X^3+10X-25):(x^2+5)=3

b<chứng minh rằng với mọi X thuộc Q thì giá trị của đa thức 

M=(X+2)(x+4)(x+6)(x+8)+16 là bình phương của một số hữu tỉ

 

0
các pn giúp mk gấp. pn nào lm đc bài nào thì comment ngay giúp mk vs. thanks các pn nhìu nhìu.câu 1 giải phương trình 8 ( x + (1/x)) 2  + 4 (x2 + (1/x2))2 - 4 ( x2 + (1/x2)) (x + (1/x ))2 = (x + (4/x))2câu 2 tìm các số tự nhiên a  >1 để biểu thức M=a4 - 5a2 - 6a - 5 có giá trị là số nguyên tốcâu 3 a) tìm các số a và b để đa thức f(x) = 6x4 - 7x3 + ax2 + 3x + 2 chia hết cho đa thức h(x) = x2 - x + bb) cho các số x...
Đọc tiếp

các pn giúp mk gấp. pn nào lm đc bài nào thì comment ngay giúp mk vs. thanks các pn nhìu nhìu.

câu 1 giải phương trình 8 ( x + (1/x)) 2  + 4 (x2 + (1/x2))2 - 4 ( x2 + (1/x2)) (x + (1/x ))2 = (x + (4/x))2

câu 2 tìm các số tự nhiên a  >1 để biểu thức M=a4 - 5a2 - 6a - 5 có giá trị là số nguyên tố

câu 3 

a) tìm các số a và b để đa thức f(x) = 6x4 - 7x3 + ax2 + 3x + 2 chia hết cho đa thức h(x) = x2 - x + b

b) cho các số x , y thỏa mãn đẳng thức x3 - 9x2y -10x2 +x -9y =10

tính giá trị nhỏ nhất của biểu thức A= x2 + 9y2

câu 4

cho tam giác ABC vuông tại A (AC>AB) đường cao AH (H thuộc BC) trên tia HC lấy D sao cho HD = HA . đường vuông góc với BC tại D cắt AC tại E

a) chứng minh tam giác ABC đồng dạng với tam giác DEC .

                      tam giác BEC đồng dạng với tam giác ADC  .

                      tính độ dài BE theo m khi AB = m * căn 2

b) gọi M là trung điểm BE . tính số đo của góc AHM

                                        chứng minh rằng BM * DC = AC * HM

c) tia AM cắt BC tại G chứng minh GB = ( HD * BC ) / (AH + HC )

CÂU 5

cho tam giác ABC có các góc A, B, C lần lượt đối diện với các cạnh BC, AC, AB. với BC = a, AC = b, AB = c và các góc A, B, C,đôi 1 khác nhau 

chứng minh rằng 60o < (a * góc A + b * góc B + c * góc C ) / (a+b+c) <90o

 

0
6 tháng 4 2019

A B C H D 3 4

Xét \(\Delta ABC\)\(\perp\) tại \(A\)

Áp dụng định lí py - ta - go :

BC2 = AB2 + AC2

BC2 = 32 + 42

BC2 = 9 + 16

BC2 = 25

BC = 5 cm

Vậy BC = 5 cm .

Xét \(\Delta ABC\)có BD là đường phân giác \(\widehat{B}\)

\(\Rightarrow\)\(\frac{DA}{DC}=\frac{AB}{BC}\)\(\Rightarrow\) \(\frac{DA}{DC}=\frac{3}{5}\)\(\Rightarrow\) \(\frac{DA}{3}=\frac{DC}{5}\)\(=\frac{DA+DC}{3+5}=\frac{4}{8}=\frac{1}{2}\)

\(\Rightarrow\)\(\frac{DA}{3}=\frac{1}{2}\)\(\Rightarrow\)\(DA=\frac{3}{2}=1,5\)cm

Ta có : AC = AD + DC

           4 = 1,5 + DC

\(\Rightarrow DC=2,5\)cm

Xét \(\Delta AHB\) và  \(\Delta CAB\) có :

         \(\widehat{AHB}\)\(=\)\(\widehat{CAB}\) ( cùng bằng 900 )

           \(\widehat{B}\) chung

\(\Rightarrow\)\(\Delta AHB\)\(~\)\(\Delta CAB\) ( g - g )

6 tháng 4 2019

Do \(\Delta AHB\) \(~\)\(\Delta CAB\)

\(\Rightarrow\)\(\frac{AB}{BH}=\frac{BC}{AB}\)\(\Rightarrow\)\(AB.AB=BH.BC\)\(\Rightarrow\)\(AB^2=BH.BC\)

1) cho phân thức: A=\(\frac{x-3}{7x^2+7x}\) a/ tìm giá trị của x để phân thức trên được xác địnhb/ tìm x để phân thức A có giá trị bằng 02) cho tam giác ABC vuông tại A, đường trung tuyến AM. gọi P là trung điểm của AB, Q là điểm đối xứng với M qua Pa) chứng minh : trứ giác AQBM là hình thoib) tính diện tích tam giác ABC, biết AB =10cm, AC=6cmc) tam giác BC cần điều kiện gì thì tứ giác AQBM là hình...
Đọc tiếp

1) cho phân thức: A=\(\frac{x-3}{7x^2+7x}\) 

a/ tìm giá trị của x để phân thức trên được xác định

b/ tìm x để phân thức A có giá trị bằng 0

2) cho tam giác ABC vuông tại A, đường trung tuyến AM. gọi P là trung điểm của AB, Q là điểm đối xứng với M qua P

a) chứng minh : trứ giác AQBM là hình thoi

b) tính diện tích tam giác ABC, biết AB =10cm, AC=6cm

c) tam giác BC cần điều kiện gì thì tứ giác AQBM là hình vuông

3) phân tích đa thức thành nhân tử 

a/ \(2x^3-12x^2+18x\)

b/\(16y^2-4x^2-12x-9\)

4) rút gọn các phân thức sau

a/\(\left(x-5\right)\left(x^2+26\right)+\left(5-x\right)\left(1-5x\right)\)

b/\(\left(\frac{2}{x-1}-\frac{1}{x+1}\right)\frac{x^2-1}{x^2+6x+9}+\frac{x+1}{2x+6}\)

5) cho biều thức P=\(\frac{8x^3-12x^2+x-1}{4x^2-4x+1}\)

a/ tìm điều kiện xác định của x để giá trị của phân thức2 được xác định

b/ tìm giá trị của x để giá trị của phân thức bằng 0

6/  tìm a để đa thức \(x^3-7x-x^2+a\)chia hết cho đa thức x-3

7/  cho tam giác ABC cân tại A, đường cao AM, gọi I là trung điềm AC, K là điểm đối xứng của Mqua I

a/ chứng minh rằng: tứ giác AMCK là hình chữ nhật 

b/ tìm điều kiện của tam giác ABC để tứ giác AKCM là hình vuông

c/ SO sánh diện tích tam giác ABC với diện tích tứ giác AKCM

3
31 tháng 12 2017

Bài 1:

a) Để giá trị của phân thức A được xác định <=> \(7x^2+7x\ne0\) <=>  \(7x.\left(x+1\right)\ne0\)<=> \(x\ne0\)và \(x\ne-1\)

=> Để giá trị của phân thức A được xác định thì x phải khác -1 và 0.

b) Để phân thức A = 0 => x - 3 = 0 => x = 3 (thỏa mãn đkxd)

=> Để giá trị phân thức A = 0 thì x = 3

31 tháng 12 2017

Bạn viết z chắc mỏi tay lắm. Mik sẽ giải cho bạn b3 nhé

a) \(2x^3-12x^2+18x=2x.\left(x^2-6x+9\right)=2x.\left(x-3\right)^2\)

b) \(16y^2-4x^2-12x-9=16y^2-\left(4x^2+12x+9\right)=16y^2-\left(2x+3\right)^2\)

\(=\left(4y+2x+3\right).\left(4y-2x-3\right)\)