K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2024

loading... 

∆OAB vuông tại O

⇒ AB² = OA² + OB² (Pythagore)

= 3² + 4²

= 25

⇒ AB = 5

⇒ Chu vi ∆OAB:

OA + OB + AB = 3 + 4 + 5 = 12

16 tháng 12 2023

a: Tạo độ A là:

\(\left\{{}\begin{matrix}y=0\\-x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\-x=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=-0+2=2\end{matrix}\right.\)

Vậy: O(0;0); A(2;0); B(0;2)

\(OA=\sqrt{\left(2-0\right)^2+\left(0-0\right)^2}=\sqrt{2^2}=2\)

\(OB=\sqrt{\left(0-0\right)^2+\left(2-0\right)^2}=\sqrt{2^2}=2\)

b: \(AB=\sqrt{\left(0-2\right)^2+\left(2-0\right)^2}=\sqrt{2^2+2^2}=2\sqrt{2}\)

Chu vi tam giác OAB là:

\(C_{OAB}=OA+OB+AB=4+2\sqrt{2}\)

Ta có: Ox\(\perp\)Oy

=>OA\(\perp\)OB

=>ΔOAB vuông tại O

=>\(S_{OAB}=\dfrac{1}{2}\cdot AO\cdot OB=\dfrac{1}{2}\cdot2\cdot2=2\)

26 tháng 8 2023

a) Để viết phương trình đường thẳng AB, CD, DA, ta có thể sử dụng công thức phương trình đường thẳng đi qua hai điểm.

Phương trình đường thẳng AB: Điểm A(4,5) và B(1,-1) Ta có: Độ dốc của đường thẳng AB: m = (y2 - y1) / (x2 - x1) = (-1 - 5) / (1 - 4) = -2 Phương trình đường thẳng AB: y - y1 = m(x - x1) => y - 5 = -2(x - 4) => y - 5 = -2x + 8 => 2x + y = 13

Phương trình đường thẳng CD: Điểm C(4,-4) và D(7,-1) Ta có: Độ dốc của đường thẳng CD: m = (y2 - y1) / (x2 - x1) = (-1 - (-4)) / (7 - 4) = 1 Phương trình đường thẳng CD: y - y1 = m(x - x1) => y - (-1) = 1(x - 7) => y + 1 = x - 7 => x - y = 8

Phương trình đường thẳng DA: Điểm D(7,-1) và A(4,5) Ta có: Độ dốc của đường thẳng DA: m = (y2 - y1) / (x2 - x1) = (5 - (-1)) / (4 - 7) = -2 Phương trình đường thẳng DA: y - y1 = m(x - x1) => y - (-1) = -2(x - 7) => y + 1 = -2x + 14 => 2x + y = 13

b) Để tính chu vi tứ giác ABCD, ta cần tính độ dài các cạnh của tứ giác.

Độ dài cạnh AB: AB = √[(x2 - x1)^2 + (y2 - y1)^2] = √[(1 - 4)^2 + (-1 - 5)^2] = √[9 + 36] = √45

Độ dài cạnh BC: BC = √[(x2 - x1)^2 + (y2 - y1)^2] = √[(4 - 1)^2 + (-4 - (-1))^2] = √[9 + 9] = √18

Độ dài cạnh CD: CD = √[(x2 - x1)^2 + (y2 - y1)^2] = √[(7 - 4)^2 + (-1 - (-4))^2] = √[9 + 9] = √18

Độ dài cạnh DA: DA = √[(x2 - x1)^2 + (y2 - y1)^2] = √[(7 - 4)^2 + (-1 - 5)^2] = √[9 + 36] = √45

Từ đó, chu vi tứ giác ABCD là: AB + BC + CD + DA = √45 + √18 + √18 + √45.

26 tháng 8 2023

loading... a) * Gọi (d): y = ax + b là phương trình đường thẳng AB

Do (d) đi qua A nên:

4a + b = 5

⇔ b = 5 - 4a (1)

Do (d) đi qua B nên:

a + b = -1 (2)

Thay (1) vào (2) ta được:

a + 5 - 4a = -1

⇔ -3a = -6

⇔ a = 2

Thay a = 2 vào (1) ta được:

b = 5 - 4.2 = -3

Vậy (d): y = 2x - 3

* Gọi (d'): y = ax + b là phương trình đường thẳng CD

Do (d') đi qua C nên:

4a + b = -4

⇔ b = -4 - 4a  (3)

Do (d') đi qua D nên:

7a + b = -1  (4)

Thay (3) vào (4) ta được:

7a - 4 - 4a = -1

⇔ 3a = 3

⇔ a = 1

Thay a = 1 vào (3) ta được:

b = -4 - 4.1 = -8

Vậy (d'): y = x - 8

* Gọi (d''): y = ax + b là phương trình đường thẳng DA

Do (d'') di qua D nên:

7a + b = -1

⇔ b = -1 - 7a  (5)

Do (d'') đi qua A nên:

4a + b = 5 (6)

Thay (5) vào (6) ta được:

4a - 1 - 7a = 5

⇔ -3a = 6

⇔ a = -2

Thay a = -2 vào (5) ta được:

b = -1 - 7.(-2) = 13

Vậy (d''): y = -2x + 13

b) Ta có:

AB² = 3² + 6² = 45

⇒ AB = 3√5

BC² = 3² + 3² = 18

⇒ BC = 3√2

CD² = 3² + 5² = 34

⇒ CD = √34

AD² = 3² + 4² = 25

⇒ AD = 5

Chu vi tứ giác ABCD:

3√5 + 3√2 + √34 + 5

HQ
Hà Quang Minh
Giáo viên
13 tháng 1 2024

a)

* Xét đường thẳng y = x

Cho x = 1 suy ra y = 1 nên điểm (1; 1) thuộc đường thẳng y = x

Đường thẳng y = x đi qua 2 điểm O(0; 0) và (1; 1)\

* Xét đường thẳng y = -x + 2

Cho x = 2 thì y = -2 + 2 = 0 nên điểm (2; 0) thuộc đường thẳng y = - x+ 2

Cho y = 2 suy ra x = 0 nên điểm (0; 2 ) thuộc đường thẳng y = -x + 2

Đường thẳng y = - x + 2 đi qua hai điểm (2; 0) và (0; 2)

 

b) Giao điểm A của hai đường thẳng đã cho là A(1;1)

c) Cho y =0 ta được −x + 2 = 0 hay x = 2, suy ra B(2; 0).

Gọi C là giao điểm của đường thẳng y = −x + 2 và trục Oy. Suy ra C(0; 2). Dễ thấy tam giác OBC vuông cân tại O (vì OB = OC = 2).

Xét hai tam giác OAB và OAC có:

cạnh OA chung;

OB = OC;

\( \widehat {OBA} = \widehat {OCA} = 45^0\)

Do đó \(\Delta OAB = \Delta OAC\), từ đó suy ra AB = AC.

Điều này chứng tỏ A là trung điểm của BC, mà \(\Delta OBC \) cân tại O nên \(OA \bot AB\), tức là \(\Delta OAB\) vuông tại A.

d)

Đường thẳng y = x có hệ số góc bằng 1.

Đường thẳng y = - x + 1 có hệ số góc bằng -1

Tích của hai hệ số góc bằng -1

a: A(0;4); B(-3;0); C(3;0)

\(AB=\sqrt{\left(-3-0\right)^2+\left(0-4\right)^2}=5\)

\(AC=\sqrt{\left(3-0\right)^2+\left(0-4\right)^2}=5\)

\(BC=\sqrt{\left(3+3\right)^2+\left(0-0\right)^2}=6\)

Chu vi tam giác ABC là:

5+5+6=16

Xét ΔABC có \(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{5^2+5^2-6^2}{2\cdot5\cdot5}=\dfrac{7}{25}\)

=>\(sinBAC=\sqrt{1-\left(\dfrac{7}{25}\right)^2}=\dfrac{24}{25}\)

Diện tích tam giác ABC là:

\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinBAC\)

\(\dfrac{1}{2}\cdot5\cdot5\cdot\dfrac{24}{25}=\dfrac{24}{2}=12\)

b: Khoảng cách từ C đến AB là:

\(2\cdot\dfrac{S_{ABC}}{AB}=\dfrac{2\cdot12}{5}=\dfrac{24}{5}=4,8\)

21 tháng 1 2024

 Xin cảm ơn ạ. 

26 tháng 1 2016

Nối A với B, lấy C là 1 điểm bất kì trên đoạn thẳng AB

Lời giải:

Gọi B(a,b)B(a,b) và C(c,d)C(c,d)

Ta có HA=(0,4)BC=(ca,db)4(db)=0b=dHA→=(0,4)⊥BC→=(c−a,d−b)⇒4(d−b)=0→b=d

Thay d=bd=b:

HB=(a1,b2)AC=(c1,b6)HB→=(a−1,b−2)⊥AC→=(c−1,b−6)

(a1)(c1)+(b2)(b6)=0⇒(a−1)(c−1)+(b−2)(b−6)=0

Lại có IA2=IB2=IC2{(a2)2+(b3)2=10(c2)2+(b3)2=10IA2=IB2=IC2↔{(a−2)2+(b−3)2=10(c−2)2+(b−3)2=10

(a2)2=(c2)2a+c=4⇒(a−2)2=(c−2)2→a+c=4 ( aca≠c )

Ta thu được

{(a2)2+(b3)2=10(3a)(a1)+(b2)(b6)=0{(a−2)2+(b−3)2=10(3−a)(a−1)+(b−2)(b−6)=0

{a2+b24a6b+3=0a2+4a+b28b+9=02b214b+12=0b=1{a2+b2−4a−6b+3=0−a2+4a+b2−8b+9=0⇒2b2−14b+12=0→b=1

hoặc b=6b=6

Thay vào PT suy ra [a2+4a+2=0a2+4a3=0[a=2+6a=1;a=3[−a2+4a+2=0−a2+4a−3=0⇒[a=2+6a=1;a=3

Vậy.....