Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ABCOMNHE
a) Do M, N thuộc đường tròn đường kính BC nên \(\widehat{BMC}=\widehat{BNC}=90^o\Rightarrow BN\perp AC;CM\perp AB\)
Xét tam giác ABC có BN và CM là hai đường cao nên H là trực tâm, vậy thì AH cũng là đường cao của tam giác hay \(AH\perp BC\)
b) Do AMH và ANH là các tam giác vuông có chung cạnh huyền AH nên AMHN là tứ giác nội tiếp đường tròng tâm E, bán kính EH. Vậy thì \(\widehat{MHE}=\widehat{MNA}\) (Hai góc nội tiếp cùng chắn cung AM)
Lại có EM = EH nên \(\widehat{MHE}=\widehat{HME}\)
Vậy nên \(\widehat{HME}=\widehat{MNA}\) (1)
Lại có do OM = OC nên \(\widehat{OMC}=\widehat{OCM}\) mà \(\widehat{OCM}=\widehat{BNM}\) (Hai góc nội tiếp cùng chắn cung BM)
Vậy nên \(\widehat{OMC}=\widehat{BNM}\) (2)
Từ (1) và (2) suy ra \(\widehat{HME}+\widehat{OMC}=\widehat{MNA}+\widehat{MNB}\Rightarrow\widehat{EMO}=\widehat{ANH}=90^o\)
Vậy ME là tiếp tuyến của đường tròn (O)
Xét tam giác MEO và NEO có: Cạnh EO chung, EM = EN, OM = ON
\(\Rightarrow\Delta MEO=\Delta NEO\left(c-g-c\right)\)
\(\Rightarrow S_{MEO}=S_{NEO}\Rightarrow S_{MEO}=\frac{1}{2}S_{MENO}\)
\(\Rightarrow\frac{1}{2}ME.MO=\frac{1}{4}.MN.EO\Rightarrow MN.OE=2ME.MO\)
c) Do tứ giác AMHN nội tiếp nên \(\widehat{MAH}=\widehat{MNH}\)
Mà \(\widehat{MCB}=\widehat{MNH}\Rightarrow\widehat{MAH}=\widehat{MCB}\)
Vậy thì \(\Delta AMH\sim\Delta CMB\left(g-g\right)\Rightarrow\frac{CM}{AM}=\frac{CB}{AH}=1\)
Lại có xét tam giác vuông AMC, \(tan\widehat{BAC}=\frac{MC}{AM}=1.\)

AH = BC => tam giác MBC =MHA ( tự cm)
=> BMH vuông cân tại M => NBA = BAN = 45
=>...

a: Xét (O) có
ΔBMC nội tiếp đường tròn
BC là đường kính
Do đó: ΔBMC vuông tại M
Xét (O) có
ΔBNC nội tiếp đường tròn
BC là đường kính
Do đó: ΔBNC vuông tại N
Xét ΔBAC có
BN là đường cao ứng với cạnh huyền AC
CM là đường cao ứng với cạnh huyền AB
BN cắt CM tại H
Do đó: AH⊥BC
Câu 15:
1: Sửa đề: Chứng minh AH⊥BC
Xét (O) có
ΔBMC nội tiếp
BC là đường kính
Do đó: ΔBMC vuông tại M
=>CM⊥AB tại M
Xét (O) có
ΔBNC nội tiếp
BC là đường kính
Do đó: ΔBNC vuông tại N
=>BN⊥AC tại N
Gọi K là giao điểm của AH và BC
Xét ΔABC có
BN,CM là các đường cao
BN cắt CM tại H
Do đó: H là trực tâm của ΔABC
=>AH⊥BC tại K
2: ΔAMH vuông tại M
mà ME là đường trung tuyến
nên ME=EH=EA
ME=EH
=>ΔEMH cân tại E
=>\(\hat{EMH}=\hat{EHM}\)
mà \(\hat{EHM}=\hat{KHC}\) (hai góc đối đỉnh)
nên \(\hat{EMH}=\hat{KHC}\)
ΔOMC cân tại O
=>\(\hat{OMC}=\hat{OCM}\)
\(\hat{OME}=\hat{OMC}+\hat{EMC}\)
\(=\hat{OCM}+\hat{KHC}=90^0\)
=>ME⊥MO tại M
=>ME là tiếp tuyến của (O) tại M
3: ΔANH vuông tại N
mà NE là đường trung tuyến
nên NE=EH=EM
EM=EN nên E nằm trên đường trung trực của MN(1)
OM=ON
nên O nằm trên đường trung trực của MN(2)
Từ (1),(2) suy ra EO là đường trung trực của MN
=>EO⊥MN tại I và I là trung điểm của MN
Xét ΔEMO vuông tại M có MI là đường cao
nên \(MI\cdot EO=ME\cdot MO\)
=>\(2\cdot ME\cdot MO=2\cdot MI\cdot EO=EO\cdot MN\)
Câu 14:
a: Sửa đề: Cho hàm số y=2x-4
Vẽ đồ thị:
b: Thay x=0 vào y=x-3, ta được:
y=0-3=-3
=>A(0;-3)
Thay y=0 vào y=2x+1, ta được:
2x+1=0
=>2x=-1
=>\(x=-\frac12\)
=>B(-1/2;0)
Thay x=0 và y=-3 vào y=ax+b, ta được:
\(a\cdot0+b=-3\)
=>b=-3
=>y=ax-3
Thay x=-1/2 và y=0 vào y=ax-3, ta được:
\(a\cdot\frac{-1}{2}-3=0\)
=>\(-\frac12a=3\)
=>a=-6