Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z+34=0\)
\(\Leftrightarrow\left(4x^2+y^2+z^2-4xy-4xz+2yz\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)
\(\Leftrightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)
Do \(\hept{\begin{cases}\left(2x-y-z\right)^2\ge0\\\left(y-3\right)^2\ge0\\\left(z-5\right)^2\ge0\end{cases}\Rightarrow VT\ge0}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-y-z=0\\y-3=0\\z-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x=y+z\\y=3\\z=5\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}}\)
Khi đó \(P=\left(4-4\right)^{2018}+\left(3-4\right)^{2018}+\left(5-4\right)^{2018}\)
\(=0+\left(-1\right)^{2018}+1^{2018}\)
\(=2\)
\(\left(x-y+4\right)^2-\left(2x+3y-1\right)^2\)
\(=\left(x-y+4+2x+3y-1\right)\left(x-y+4-2x-3y+1\right)\)
\(=\left(3x+2y+3\right)\left(-x-4y+5\right)\)
\(49\left(y-4\right)^2-9y^2-36y-36\)
\(=49\left(y-4\right)^2-\left(9y^2+36y+36\right)\)
\(=49\left(y-4\right)^2-\left(3y+6\right)^2\)
\(=[7\left(y-4\right)]^2-\left(3y+6\right)^2\)
\(=\left(7y-28\right)^2-\left(3y+6\right)^2\)
\(=\left(7y-28+3y+6\right)\left(7y-28-3y-6\right)\)
\(=\left(10y-22\right)\left(4y-34\right)\)
Câu a:
= x( x-4 ) + 2y( x-4 )
= (x-4) (x+2y)
Câu b: ( câu này mình ko biết làm)😅
\(b,9x^2+90x+225-\left(x-y\right)^2\)
\(=\left(3x+15\right)^2-\left(x-y\right)^2\)
\(=\left(3x+15-x+y\right)\left(3x+15+x-y\right)\)
\(=\left(2x+y+15\right)\left(4x-y+15\right)\)
\(10x^2\) \(+y^2\) \(+4z^2+6x-4y-4xz+5=0\)
\(\Leftrightarrow\left(9x^2-6x+1\right)+\left(x^2-2.x.2z+4z^2\right)\) \(+\left(y^2-4y+4\right)=0\)
\(\Leftrightarrow\)\(\left(3x-1\right)^2\) \(+\left(x-2z\right)^2\) \(+\left(y-2\right)^2=0\)
Có \(\left(3x-1\right)^2\ge0\forall x\)
\(\left(x-2z\right)^2\ge0\forall x,z\)
\(\left(y-2\right)^2\) \(\ge0\forall y\)
\(\Rightarrow\) \(\left(3x-1\right)^2\) \(+\left(x-2z\right)^2+\left(y-2\right)^2\ge0\forall x,y,z\)
Dấu = xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}3x-1=0\\x-2z=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{3}\\z=\frac{1}{6}\\y=2\end{cases}}\)
KL
A
Câu 10. A