Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số sản phẩm dự định là a (sản phẩm ) (a là số tự nhiên khác 0)
Vì theo dự định mỗi ngày sản xuất 50 sản phẩm nên số ngày theo dự định là \(\dfrac{a}{50}\)
Nhưng thực tế , đội đã sản xuất theeo được 30 sản phẩm do mỗi ngày vượt mức 10 sản phẩm (nghĩa là sản xuất 60 sản phẩm) , nên số ngày thực tế là \(\dfrac{a+30}{60}\)
Vì thực tế sớm hơn dự định 2 ngày nên ta có phương trình :
\(\dfrac{a}{50}=\dfrac{a+30}{60}+2\\ \Leftrightarrow6a=5\left(a+30+120\right)\\\Leftrightarrow a=750\left(t.m\right) \)
Vậy số sản phẩm dự định là 750 sản phẩm
Bài 3:
Gọi số sản phẩm đội phải sản xuất theo kế hoạch là x( sản phẩm, x\(\in N\)*)
Thời gian đội sản xuất theo kế hoạch là: \(\dfrac{x}{50}\) (ngày)
Số ngày làm thực tế là: \(\dfrac{x+30}{50+10}=\dfrac{x+30}{60}\) (ngày)
Theo bài ra, ta có phương trình:
\(\dfrac{x}{50}-\dfrac{x+30}{60}=2\)
\(\Leftrightarrow\dfrac{60x-50\left(x+30\right)}{50.60}=2\)
\(\Leftrightarrow60x-50x-1500=6000\Leftrightarrow x=750\)(thoả mãn)
Vậy theo kế hoạch đội phải sản xuất 750 sản phẩm
\(\dfrac{BC}{x}=\dfrac{BC+6x}{BC}=>BC^2=BC.x+6x^2\)
\(=>6x^2+BC.x-BC^2=0\)
\(< =>6\left(x^2+\dfrac{1}{6}BCx-\dfrac{1}{6}BC^2\right)=0\)
\(=>x^2+\dfrac{1}{6}BCx-\dfrac{1}{6}BC^2=0\)
\(< =>x^2+2.\dfrac{1}{12}BC.x+\left(\dfrac{1}{12}BC^2\right)-\left(\dfrac{1}{12}BC\right)^2-\dfrac{1}{6}BC^2=0\)
\(< =>\left(x+\dfrac{1}{12}BC\right)^2-\left(\dfrac{5}{12}BC\right)^2=0\)
\(=>\left(x+\dfrac{1}{12}BC+\dfrac{5}{12}BC\right)\left(x+\dfrac{1}{12}BC-\dfrac{5}{12}BC\right)=0\)
\(< =>\left(x+\dfrac{1}{2}BC\right)\left(x-\dfrac{1}{3}BC\right)=0\)
\(=>\left[{}\begin{matrix}x+\dfrac{1}{2}BC=0\\x-\dfrac{1}{3}BC=0\end{matrix}\right.=>\left[{}\begin{matrix}BC=2x\\BC=3x\end{matrix}\right.\)
Bạn chỉ cần áp dụng cái phân tích đa thức thành nhân tử bằng phương pháo đặt nhân tử chung là ra rồi
\(C=3x^{n-2+n+2}-3x^{n-2}y^{n+2}+3x^{n-2}y^{n+2}-y^{n+2+n-2}\\ C=3x^{2n}-y^{2n}\)
\(\dfrac{x}{a}=\dfrac{m-\dfrac{x}{2}}{m}\)
\(\Rightarrow xm=a\left(m-\dfrac{x}{2}\right)\)
\(\Rightarrow xm=am-\dfrac{ax}{2}\)
\(\Rightarrow2xm=2am-ax\)
\(\Rightarrow2xm+ax=2am\)
\(\Rightarrow x\left(2m+a\right)=2am\)
\(\Rightarrow x=\dfrac{2am}{a+2m}\)
a: Ta có: \(x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
d: Ta có: \(x^2-2x+\left|y+1\right|+5\)
\(=\left(x-1\right)^2+\left|y+1\right|+4\ge4\forall x,y\)
Dấu '=' xảy ra khi x=1 và y=-1
1008
Xét hình ta thấy ở hình bình hành thứ nhất = 2 hình tam giác cần 5 que diêm để tạo
- Các hình bình hành sau =2 hình tam giác chỉ cần 4 que để tạo
Vậy tạm thời ta loại hình thứ nhất ( 5 que ), số hình bình hành có 4 que là:
(2017-5):4=503 hình
Số hình tam giác là: 503.2=1006 hình
Ta cộng thêm 2 hình từ hình bình hành thứ nhất loại tạm thời nên sô tam giác là:
1006+2=1008 hình