K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2018

3A = 1 + 1/3 + 1/3^2 + ... + 1/3^199

3A - A = ( 1 + 1/3 + 1/3^2 + ... + 1/3^99 ) - ( 1/3 + 1/3^2 + 1/3^3 + ... + 1/3^100 )

2A = 1 - 1/3^100

A = ( 1 - 1/3^100 ) / 2

14 tháng 6 2018

\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)

\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}\right)\)

\(2A=1-\frac{1}{3^{100}}\)

\(A=\frac{3^{100}-1}{3^{100}.2}\)

mk chỉ làm được đến đây thôi

16 tháng 5 2017

\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\left(1\right)\)

\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\left(2\right)\)

          Lấy (2) - (1) ta được:\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+..+\frac{1}{3^{100}}\right)\)

                               \(\Leftrightarrow2A=1-\frac{1}{3^{100}}\)

                               \(\Leftrightarrow A=\left(\frac{3^{100}-1}{3^{100}}\right):2\)

                               \(\Leftrightarrow A=\frac{3^{100}-1}{2.3^{100}}\)

                               

24 tháng 4 2017

Cách làm là là A × 3 lên

K cho mk nha mn

24 tháng 4 2017

Bạn phải giải thích cụ thể ra cho mk biết chứ

16 tháng 3 2017

1 : 29 x ( 19 -13 ) - 19 x ( 29 - 13 )

= 29 x 6 - 19 x 16

= 174 - 304

=  - 130

2 : 1 - \(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

1 - \(\frac{1}{100}\)

\(\frac{99}{100}\)

3 tháng 7 2017

Đăt A = \(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+......+\frac{1}{7^{100}}\)

\(\Rightarrow7A=1+\frac{1}{7}+\frac{1}{7^2}+.....+\frac{1}{7^{100}}\)

\(\Rightarrow7A-A=1-\frac{1}{7^{100}}\)

\(\Rightarrow6A=1-\frac{1}{7^{100}}\)

\(\Rightarrow A=\frac{1-\frac{1}{7^{100}}}{6}\)

11 tháng 5 2016

\(A=\frac{3}{1}+\frac{3}{1+2}+\frac{3}{1+2+3}+...+\frac{3}{1+2+3+...+99+100}\)

\(=3+\frac{3}{\frac{\left(1+2\right).2}{2}}+\frac{3}{\frac{\left(1+3\right).3}{2}}+...+\frac{3}{\frac{\left(1+100\right).100}{2}}\)

\(=3+\frac{6}{2.3}+\frac{6}{3.4}+...+\frac{6}{100.101}=3+6.\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\right)\)

\(=3+6.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)

\(=3+6.\left(\frac{1}{2}-\frac{1}{101}\right)=3+6.\frac{99}{202}=\frac{600}{101}\)

11 tháng 5 2016

Tốt nhất bạn nên nói mấy bài đơn giản ik dạng nâng cao ko có cho thi đâu đừng lo

hehe

10 tháng 4 2017

A = 1 + 1/2 + 1/3 + 1/4 + 1/5 + ... + 1/100

Ta đổi A = 2-1+1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/99-1/100

A= 2 - 1 - 1/100 =200/100 -100/100 - 1/100

A= 99/100

10 tháng 4 2017

Cảm ơn bạn Kudo Shinichi, nhưng 

1=2-1 ->ok

1/2=1-1/2 ->ok

1/3=1/2-1/3 -> sai 

vì 1/2-1/3=1/6

Câu 1: Tính: \(A=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2017\right)}{1\cdot2+2\cdot3+3\cdot4+...+2017\cdot2018}\)Câu 2: Cho: \(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}\) và \(B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}\)Câu 3: Chứng tỏ rằng: \(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{2}\)Câu 4: Tìm các số tự nhiên a, b sao cho: \(\frac{a}{2}+\frac{b}{3}=\frac{a+b}{2+3}\)Câu 5:...
Đọc tiếp

Câu 1: Tính: \(A=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2017\right)}{1\cdot2+2\cdot3+3\cdot4+...+2017\cdot2018}\)

Câu 2: Cho: \(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}\) và \(B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}\)

Câu 3: Chứng tỏ rằng: \(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{2}\)

Câu 4: Tìm các số tự nhiên a, b sao cho: \(\frac{a}{2}+\frac{b}{3}=\frac{a+b}{2+3}\)

Câu 5: Tính \(A=\left(\frac{1}{2^2}-1\right)\cdot\left(\frac{1}{3^2}-1\right)\cdot\left(\frac{1}{4^2}-1\right)\cdot...\cdot\left(\frac{1}{100^2}-1\right)\)

Câu 6: Tìm số tự nhiên n để các phân số tối giản

 \(A=\frac{2n+3}{3n-1}\)\(B=\frac{3n+2}{7n+1}\)

Câu 7: So sánh: \(A=1\cdot3\cdot5\cdot7\cdot...\cdot99\) với \(B=\frac{51}{2}\cdot\frac{52}{2}\cdot\frac{53}{2}\cdot...\cdot\frac{100}{2}\)

Câu 8: Chứng tỏ rằng: 

a) \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}< 1\)

b) \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)

Câu 9: Cho \(A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}\)

Chứng minh rằng: \(\frac{1}{3}< A< \frac{1}{2}\)

Câu 10: Chứng tỏ rằng: \(\frac{7}{12}< \frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}< 1\)

1
24 tháng 4 2018

Câu 8( Mình không viết đè nữa nha)

a)   2-1/1.2 + 3-2/2.3 + 4-3/3.4 +…..+ 100-99/99.100

=  1 – 1/2 + 1/2 – 1/3 + 1/3 – 1/4 +…..+ 1/99 – 1/100

=  1 – 1/100 < 1

=   99/100 < 1

    Vậy A< 1

4 tháng 4 2020

*) A=1+6+11+16+21+....+101

Dãy trên có: \(\left(101-1\right):5+1=21\)(số số hạng)

\(\Rightarrow A=\frac{\left(101+1\right)\cdot21}{2}=1071\)

*) Đặt C=\(1^2+2^2+3^2+....+98^2=1\cdot1+2\cdot2+3\cdot3+....+98\cdot98\)

\(\Rightarrow B-C=\left(1\cdot2+2\cdot3+3\cdot4+....+98\cdot99\right)-\left(1\cdot1+2\cdot2+3\cdot3+....+98\cdot98\right)\)

\(=\left(1\cdot2-1\cdot1\right)+\left(2\cdot3-2\cdot2\right)+\left(3\cdot4-3\cdot3\right)+.....+\left(98\cdot99-98\cdot98\right)\)

\(=1\left(2-1\right)+2\left(3-2\right)+3\left(4-3\right)+....+98\left(99-1\right)\)

\(=1\cdot1+2\cdot1+3\cdot1+....+98\cdot1\)

\(=1+2+3+....+98\)

\(=\frac{\left(98+1\right)\cdot98}{2}=4851\)

4 tháng 4 2020

A = 1 + 6 + 11 + 16 +21 +... + 101

Số chữ số của tổng A là :

( 101 - 1 ) : 5 + 1 = 21 (số)

Tổng A = 1 + 6 + ... + 101 = (101 + 1) . 21 : 2 = 1071

28 tháng 5 2016

\(s=\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{100}}\)

3S = \(1+\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^{99}}\)

=> S = \(\frac{3S-S}{2}=\frac{1-\frac{1}{3^{100}}}{2}\)