Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
â, Vì D đối xứng với M qua AB ⇒ AD=AM ⇒ ΔADM cân tại A ⇒ ∠A1= ∠A2=1/2 ∠DAM ⇒ ∠DAM=2 ∠A2
Vì E đối xứng với M qua AC ⇒ AE=ÂM ⇒ ΔAEM cân tại A ⇒ ∠A3= ∠A4=1/2 ∠AEM ⇒ ∠AEM=2 ∠A3
⇒ ∠DAE= ∠DAM+ ∠MAE
=2 lần góc A2+ 2 lần góc A3
=2(góc A2+A3)
= 2 lần góc BAC
= 2.70=140
Xét ΔDAE có AD=AE(=ÂM) ⇒ ΔDAE cân tại A
⇒ ∠ADE= ∠AED=180- ∠DAE/2=180-140/2=40/2=20
b, Xét ΔADI và ΔAMI có:
AD=AM(cmt)
∠A1= ∠A2
ẠI chúng
⇒ΔADI = ΔAMI(c.g.c)
⇒ ∠ADI= ∠AMI( 2 góc t/u) (1)
Xét ΔAMK và ΔAEK có:
ÂM=AE(cmt)
∠A3= ∠A4
AK chúng
⇒ΔAMK = ΔAEK(c.g.c)
⇒ ∠AMK= ∠AEK( 2 góc t/u) (2)
mà góc ADE= AED (3)
Từ (1),(2),(3) ⇒ ∠AMI= ∠AMK ⇒AM là tia phân giác ∠IMK
c, Để DE ngắn nhất ⇔ ΔADE cân tại A có AD=AE ngắn nhất
má AD=AE=AM(cmt) ⇔AM ngắn nhất
Kẻ AH vuông góc BC ⇒ ΔAHM vuông tại H ⇒AH ≤AM
AM ngắn nhất ⇔AM=AH ⇔ ∠M= ∠H
a )ta có tg AHM là tg cân tại A ( vì AB là đc vừa là đtt )
=> MAB =MAC (*)
tương tự ta có tg BHM cân tại B
=> MBA = HBA (2*)
từ (*) & (2*) => tg AMB đồg dạg tg AHB ( gg)
=> g AMB = g AHB = 90*
vậy tg AMB v tại M
b) theo câu a ta có tg MAB cân tại A => MA=MB
tương tự tg AHN cân tại A ( vì AC là đc vừa là đ tt )
=> AH=AN
suy ra AN=AM= AH
c) ta có tg AME = tg AHE
( vì AE chug .;. g MAB=g HAB ; MA=MH)
vậy g AME = g AHE ( 2 g tương ứng )
nhớ cho mik nha
câu a bài 2 nhá
a) Gọi D là trung điểm BI => góc IDM = 45 độ
DM // IC ( đường trung bình )
=> góc BIC = 135 độ
=> 180 -1/2( góc B + góc C ) =135 độ
=> góc B + góc C = 90 độ
=> góc A = 90 độ
a: Ta có: H và M đối xứng nhau qua AB
nên BA là đường trung trực của HM
Suy ra: AM=AH(1)
ta có: H và N đối xứng nhau qua AC
nên AC là đường trung trực của HN
Suy ra: AH=AN(2)
Từ (1) và (2) suy ra AM=AN=AH