K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2021

Câu 1)  Đường thẳng d là đường trung trực của đoạn thẳng AB khi:

A.  d vuông góc với AB.

B.  d đi qua trung điểm của AB.

C.  d cắt AB tại một điểm.

D.  d đi qua trung điểm của AB và vuông góc với AB

Câu 2)  Theo tính chất từ vuông góc đến song song

Nếu a vuông góc b và a vuông góc c thì

A.  a cắt b       

B. a cắt c

C.  a song song b

D.  c song song b

29 tháng 10 2021

Câu 1) D

Câu 2) D

Chúc bạn học tốt ^^

30 tháng 3 2020

a) Xét tam giác AID và tam giác AIH

Có: AD=AH(gt)

      AI cạnh chung

                   ID=IH(gt)

  =>Tam giác AID= Tam giác AIH

b)Xét tam giác ACB

Có: A+B+C=180

                =>B+C=180-90

                =>B+C=90

c)Có tam giác AID= tam giác AIH(câu a)

               =>AID=AIH(Hai góc tương ứng)

Mà AIH+AID=180

=>AIH=90

=>Cạnh AI vuông góc với cạnh HD

d)

1 tháng 1 2021

A B C D F A B C D F A B C D E F H K a. CM AB=AF

Vì BE cắt AC tại F mà BE vuông góc AD tại E nên AE vuông góc BF 

Xét tam giác AEB và tam giác AEF có

\(\widehat{BAE}=\widehat{FAE}\)(phân giác góc A cắt BC tại D)

AE chung

\(\widehat{AEB}=\widehat{AEF}\)(AE vuông góc BF)

=> tam giác AEB=tam giác AEF (g.c.g)

=>AB=AF(2 cạnh tương ứng)

b.Ta có HF // DK (đường thẳng đi qua F (gọi là a)cắt AE tại H nên H thuộc a ; a//BC mà D,K thuộc BC)

xét tứ giác HFKD :HF // DK(cmt);HF=DK (gt) 

=>HFKD là hình bình hành (dhnb)

Nên DH=FK,DH//FK (t/c)

c. Vì AB <AC nên góc ABC > góc C (Cái này là lí thuyết ) 

2 tháng 5 2019

B C I H F E A

a)Ta có: BAI=CAI (AI là đường phân giác BAC)

Do:FH//AI=>CFH=CAI và BAI=AEF( đồng vị)

Mà:CFH=AFE(2 góc đối đỉnh)

Suy ra: AFE=AEF

Xét \(\Delta\)AFE:AFE=AEF=>\(\Delta\)AFE cân tại A=>Đường trung trực của EF đồng thời là đường cao

Hay:Đường trung trực của EF đi qua A

b) Như đã nói ở câu a:Đường trung trực của EF đồng thời là đường cao, giả sử ấy là AM

Ta có:AMF=90

Mà FH//AI=>AMF+MAI=180=>MAI=90=>AM\(\perp\)AI

Hay đường trung trực của EF vuông góc với AI

c)Do AI cố định nên đường trung trực của EF cố định

Mà \(\Delta\)AFE cân nên đường trung trực của EF đồng thời là đường trung tuyến ứng với EF

Hay đường trung tuyến ứng với EF cố định

11 tháng 7 2018

a. AM là phân giác của tam giác ABC cân tại A => AM cũng là đường cao và đường phân giác trong ta giác ABC

=> góc EAM = góc FAM

=> Tam giác EAM = tam giác FAM (cạnh huyền - góc nhọn)

=> EA=FA và EM = FM (1)

TA có: AB =AC => AB - AE = AC - ÀF <=> BE = FC (2)

Và AM là đường trung tuyến của tam giác ABC => BM =MC (3)

Từ (1), (2), (3) => tam giác BEM = tam giác CFM (c-c-c)

11 tháng 7 2018

A E B F C D M

a, Xét t/g BEM và t/g CFM có:

góc BEM = góc CFM = 90 độ (gt)

MB = MC (gt)

góc B = góc C (gt)

=> t/g BEM = t/g CFM (cạnh huyền - góc nhọn)

b, Xét t/g AEM và t/g AFM có:

EM = FM (t/g BEM = t/g CFM)

góc AEM = góc AFM = 90 độ (gt)

AM chung

=> t/g AEM = t/ AFM (c.g.c)

=> AE = AF

=> tg/ AEF cân tại A

Mà AM là tia phân giác của t/g AEF

=> AM là đường trung trực của t/g AEF hay AM là đường trung trực của EF 

c, Vì t.g ABC cân tại A và AM là trung tuyến cuả BC

=> AM cũng là đường trung trực của BC (1)

=> góc AMB = 90 độ

Xét t/g DMB và t/g DMC có:

MB = MC (gt)

góc DMB = góc DMC = 90 độ (cmt)

DM chung

=> t/g DMB = t/g DMC (c.g.c)

=> DB = DC => D thuộc trung trực của BC

Mà MB = MC => M thuộc trung trực của BC

=> DM là trung trực của BC (2)

Từ (1) và (2) => A,D,M thẳng hàng 

19 tháng 2 2020

Chuẩn

là sao bạn phương linh

1 tháng 7 2018

BD là phân giác góc ABC => góc ABD = góc EBD

=> tg ABD = tg EBD ( cạnh huyền - góc nhọn) => AB=BE

Gọi I là giao điểm của BD và AE
Ta có: tg ABI = tg EBD (c-g-c) => AI = EI và  góc ABI = góc EBI = 90độ

=> BD là trung trực của AE

c. Ta có tg ABD = tg EBD => AD = ED 

MÀ xét tg DEC vuông tại E có: ED < DC (cạnh gv < cạnh huyền)

=> DA<DC