K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2019

cái này phải gửi vào mục toán chứ sao lại gửi vào văn vậy bạn...

22 tháng 2 2018

đây là toán đâu phải văn. bạn bị say rượu à

11 tháng 7 2020

em mới lớp 7 nên không rành lắm về bất đẳng thức ạ :((

Ta có :\(a.b=1< =>a=\frac{1}{b}\)

Áp dụng bất đẳng thức : 

Ta được \(A=\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}\)

\(\ge\left(a+b+1\right)\left(2ab\right)+\frac{4}{a+b}\)

\(=\left(a+b+1\right).2+\frac{4}{a+b}\)

Áp dụng Bất đẳng thức Cauchy cho 2 số không âm 

\(2\left(a+b+1\right)+\frac{4}{a+b}\ge2\sqrt[2]{\left[2\left(a+b\right)+2\right].\frac{4}{a+b}}\)

\(=2\sqrt[2]{\frac{8\left(a+b\right)+8}{a+b}}=2\sqrt[2]{\frac{8\left(\frac{1}{b}+b\right)+8}{\frac{1}{b}+b}}\left(+\right)\)

Áp dụng bất đẳng thức Cauchy cho 2 số không âm :

\(\frac{1}{b}+b\ge2\sqrt[2]{\frac{1}{b}.b}=2\)

Khi đó \(\left(+\right)< =>2\sqrt[2]{\frac{8.2+8}{2}}=2\sqrt[2]{12}=\sqrt[2]{48}\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=1\)

Vậy \(Min_A=\sqrt{48}\)khi \(a=b=1\)

25 tháng 3 2019

Xét phương trình có \(\Delta=\left(-5\right)^2-4.3=25-12=13>0\)

=> Phương trình luôn có hai nghiệm phân biệt \(x_1,x_2\)

Theo hệ thức Vi-ét ta có: \(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=\frac{5}{3}\\x_1x_2=\frac{c}{a}=\frac{1}{3}\end{matrix}\right.\)

Ta có:

\(A=x_1^2x_2+x_1x_2^2\)

\(=x_1x_2\left(x_1+x_2\right)\)

\(=\frac{1}{3}.\frac{5}{3}=\frac{5}{9}\)

Vậy, \(A=\frac{5}{9}\)

26 tháng 3 2019

Đk để pt có nghiệm:

\(\Delta\ge0\)

\(\Rightarrow25-12=13\ge0\left(LĐ\right)\)

Theo hệ thức Viet:

\(\left\{{}\begin{matrix}x_1+x_2=\frac{5}{3}\\x_1x_2=\frac{1}{3}\end{matrix}\right.\)

\(A=x_1x_2\left(x_1+x_2\right)\)

\(A=\frac{5.1}{3.3}=\frac{5}{9}\)

Đây là box Văn mà lần sau nhớ đăng đúng chỗ.

\(\frac{1}{11xy}\sqrt{\frac{121x^2}{y^6}}=\frac{1}{11xy}.\frac{11x}{y^3}=\frac{1}{y^4}\)