K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2020

. Thể tích là:
3x42x 9 = 54 cm3
Trong tam giác vuông ABC (vuông tại A), theo định lý Pytago, ta có cạnh huyền bằng:
√32+42 = 5 cm
Diện tích xung quanh là:
(3 + 4 + 5) x 9 = 108 cm2
Diện tích toàn phần là:
108 + 3 x 4 = 120 cm2

mik ko biết có đúng ko ạ

a: Xét ΔABC và ΔDEF có

góc A=góc D

góc B=góc E

=>ΔABC đồng dạng vơi ΔDEF

=>AB/DE=AC/DF=BC/EF

=>8/6=AC/DF=10/EF

=>EF=10*6/8=7,5cm và AC/DF=4/3

=>4DF=3AC

mà AC-DF=3

nên DF=9cm; AC=12cm

b: ΔABC đồng dạng với ΔDEF

=>S ABC/S DEF=(4/3)^2=16/9

=>S DEF=22,325625(cm2)

13 tháng 5 2020

mọi người ơi ai bit lm hông chỉ tui zới

14 tháng 5 2020

A B C D E F 5 7 8 12 45 55

                               Giải

       Vì\(\Delta ABC~\Delta DEF\) nên ta có:

                \(\widehat{D}=\widehat{A}=45^o\)

               \(\widehat{E}=\widehat{B}=55^o\)

                \(\widehat{F}=\widehat{C}=\left(180^o-45^o-55^o\right)=80^o\)

      Xét\(\Delta ABC~\Delta DEF\)  có:

  \(\frac{AB}{DE}=\frac{AC}{DF}=\frac{BC}{EF}=\frac{2}{3}\)

\(\Rightarrow DE=\frac{AB.3}{2}=7,5\)

   \(DF=\frac{AC.3}{2}=10,5\)

 #hoktot<3# 

15 tháng 5 2021

a) xét ΔHED và ΔDEF có 

\(\widehat{EHD}=\widehat{EDF}=\)90o

\(\widehat{E} chung\)

=> ΔHED ∼ ΔDEF (gg)

b) Xét ΔDEF có \(\widehat{D}=\)90o

=> DE2+DF2=EF2

=>62+82=EF2

=> EF=10 cm

SΔDEF=\(\dfrac{ED.DF}{2}=\dfrac{DH.EF}{2}\)=> ED.DF=DH.EF => 6.8=DH.10

=> DH =4,8 cm

c) Xét ΔDEH có \(\widehat{EHD}=90\)o

=> HD2.HE2=ED2

=>4.82+HE2=62

=> HE=3.6

ta lại có DI là phân giác 

=> \(\dfrac{EI}{IH}=\dfrac{ED}{HD}\)

=>\(\dfrac{EI}{EH-EI}=\dfrac{6}{4.8} \)=>\(\dfrac{EI}{3.6-EI}=\dfrac{6}{4.8}\)=>EI=2

=> IH=EH-EI=3.6-2=1.6

a) Xét ΔHED vuông tại H và ΔDEF vuông tại D có

\(\widehat{HED}\) chung

Do đó: ΔHED\(\sim\)ΔDEF(g-g)

1: ΔABC\(\sim\)ΔEFD

2: ΔBCA\(\sim\)ΔEDF

3: ΔABC\(\sim\)ΔFED

4: ΔABC\(\sim\)ΔDEF