K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2017

1) BC=BH+HC=32,4+10=42,4

Xét tam giác vuông AHB, áp dụng định lí Py-ta-go vào, ta có:

AH2+HB2=AB2(1)

Xét tam giác vuông AHC, áp dụng định lí Py-ta-go vào, ta có:

AH2+HC2=AC2(2)

Ta có: AH2+HB2=AB2(1)

AH2+HC2=AC2(2)

<=> AH2+32,42=AB2(1)

AH2+102=AC2(2)

Lấy (1) - (2), ta được:

949,76=AB2-AC2(3)

Áp dụng định lí Py-ta-go vào tam giác ABC, ta có:

BC2=AB2+AC2(4)

949,76=AB2-AC2(3)

1797,76=AB2+AC2(4)

Lấy (4)-(3) ta có: 848=2AC2=>AC2=424

=>AC=\(\sqrt{424}=2\sqrt{106}\)

Từ đây, theo định lí Py-ta-go, ta dễ dàng suy ra được AB=\(\frac{18\sqrt{106}}{5}\)

\(s_{ABC}=\frac{AB.AC}{2}=\frac{\frac{18\sqrt{106}}{5}.\left(2\sqrt{106}\right)}{2}=381,6cm^2\)

AH
Akai Haruma
Giáo viên
26 tháng 12 2022

Bài 1:

$BC=2S_{ABC}: AH=2.24:6=8$ (cm)

AH
Akai Haruma
Giáo viên
26 tháng 12 2022

Bài 2:

Tam giác $ABC$ cân tại $A$ nên phân giác $AD$ đồng thời là đường cao

$\Rightarrow AD\perp DC$. Mà $\widehat{DAC}=\widehat{BAC}:2 =45^0$ nên $\triangle DAC$ vuông cân tại $D$

$\Rightarrow DA=DC(1)$

$D,E$ đối xứng với nhau qua $AC$ nên $AC$ là trung trực của $DE$

$\Rightarrow CD=CE; AD=AE(2)$
Từ $(1); (2)\Rightarrow AD=DC=CE=EA$

$\Rightarrow ADCE$ là hình thoi.

Mà $\widehat{ADC}=90^0$ nên $ADCE$ là hình vuông.

AH
Akai Haruma
Giáo viên
11 tháng 10

Bài 1:

$x^2+ax-15=x(x+3)+(a-3)(x+3)-3(a-3)-15$

$=(x+3)(x+a-3)-3a-9$

$\Rightarrow x^2+ax-15$ chia $x+3$ dư $-3a-9$

$\Rightarrow -3a-9=6$

$\Rightarrow a=-5$

13 tháng 2 2017

f(x)=q(x).(2x^2-x-6)+(13x+9)

\(2x^2-x-6=\left(x-2\right)\left(x-3\right)\)

f(2)=13.2+9=35

f(3)=39+9=48

\(\left\{\begin{matrix}6.2^4+2^3.a+2^4b-18.2+3=35\\6.3^4+3^3.a+3^2.b-18.3+3=48\end{matrix}\right.\) giải hệ => a,b

12 tháng 4 2017

Xét hai tam giác ABC và tam giác HBA có 

A = H = 90 

B là góc chung 

=> tam guacs ABC đồng dạng với tam giác HBA (g _ g) (1) 

Xét hai tam giác ABC và tam giác HCA có 

A= H = 90  

C là góc chung 

=> tam giác ABC ~ tam giác HAC ( g_ g) (2) 

(1) =>\(\frac{AB}{BC}=\frac{BH}{BA}\)=> AB.AB = BH.BC => \(AB^2\)\(=BH.BC\) 

(2) => \(\frac{AC}{BC}=\frac{CH}{AC}=AC.AC=BC.CH=AC^2=BC.CH\)

b ) Áp dụng định lý Py - ta - go vào tam giác ABC 

\(BC^2=AC^2+AB^2\)\(16^2+12^2\)= 400 

=> BC = \(\sqrt{400}=20\)

từ tam giác ABC ~ HBA  =>\(\frac{AB}{BH}=\frac{BC}{BA}< =>\frac{12}{BH}=\frac{20}{12}=>BH=\frac{12.12}{20}=7,2\)

từ tam giác ABC ~ HAC => \(\frac{AB}{HA}=\frac{BC}{AC}< =>\frac{12}{HC}=\frac{20}{16}=>HC=\frac{12.16}{20}=9,6\)

Áp dụng định lý Py - ta - go vào tam giác HBA 

\(AH^2=AB^2-HB^2=12^2-7,2^2=9,6\)

25 tháng 12 2021

Câu 3: 

a: Xét tứ giác AEHF có 

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

Do đó: AEHF là hình chữ nhật

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

\(\widehat{ACB}\) chung

Do đó: ΔABC đồng dạng với ΔHAC

b: Xét ΔKHB vuông tại K và ΔKAH vuông tại K có

\(\widehat{KHB}=\widehat{KAH}\left(=90^0-\widehat{B}\right)\)

Do đó: ΔKHB đồng dạng với ΔKAH

=>\(\dfrac{KH}{KA}=\dfrac{KB}{KH}\)

=>\(KH^2=KA\cdot KB\)

c: Ta có: ΔAHC vuông tại H

=>\(HC^2+HA^2=AC^2\)

=>\(HA^2=10^2-8^2=36\)

=>\(HA=\sqrt{36}=6\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(HB=\dfrac{6^2}{8}=4,5\left(cm\right)\)

BC=BH+CH

=4,5+8

=12,5(cm)

Xét ΔABC có AH là đường cao

nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot12,5\cdot6=3\cdot12,5=37,5\left(cm^2\right)\)