Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
a. Xét tam giác ABC và tam giác DMC
CA = CD
CB = CM
Góc ACB = góc DCM
=> Tam giác ABC = tam giác DMC (c.g.c)
b. Từ chứng minh ở phần a) => Góc ABC = góc CDM hay góc BAD = góc ADM
Mà hai góc ở vị trí so le trong
=> AB//MB
c. bạn thông cảm, ý này mình không biết làm ^^.
a) xét tam giác ABC và tam giác DMC có:
CA=CD
góc ACB= góc DCM ( đối đỉnh)
BC=CM
=> tam giác ABC=tam giác DMC (c.g.c)
b) theo a) tam giác ABC=tam giác DMC=> góc A= góc D
mà đây là 2 góc so le trong nên MD//AB
c) Xét tam giác ICB và tam giác NCM có:
góc B= góc M ( tam giác ABC= tam giác DMC)
BC=MC
góc ICB= góc NCM ( đối đỉnh)
=> tam giác ICB= tam giác NCM( g.c.g)
=> IB=MN
Mà AB=MD ( tam giác ABC= tam giác DMC)
=> AB-IB= MD-MN
=> AI=ND
a) Xét tam giác AMB và tam giác DMC có:
BM = CM (gt)
AM =DM (gt)
\(\widehat{AMB}=\widehat{DMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)
b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)
Chúng lại ở vị trí so le trong nên AB //CD.
c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.
Suy ra MA = ME
Lại có MA = MD nên ME = MD.
d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.
Suy ra ED // BC
Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.
Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)
a: Xét ΔABM và ΔDCM có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔABM=ΔDCM
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AB//DC
c: Ta có: ΔACB cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
#Tự vẽ hình nhé bạn#k mình nha#Thanks#
a ) Xét \(\Delta\)ABC và \(\Delta\)DMC có :
- AC = CD ( giả thiết )
- BC = CM ( giả thiết )
- Góc BCA = Góc MCD ( đối đỉnh )
\(\Rightarrow\)\(\Delta\)ABC = \(\Delta\)DMC ( c - g - c )
b ) Ta có : \(\Delta\)ABC = \(\Delta\)DMC ( chứng minh trên )
\(\Rightarrow\)\(BÂC\) = Góc MDC ( 2 góc tương ứng )
Mà 2 góc này ở vị trí so le trong nên\(AB // MD\)
c ) Xét \(\Delta\)IAC và \(\Delta\) NDCcó :
- Góc ICA = Góc NCD ( đối đỉnh )
- AC = CD ( giả thiết )
- BÂC = Góc CDN ( chứng minh trên )
\(\Rightarrow\)\(\Delta\)IAC = \(\Delta\)NDC ( g - c - g )
\(\Rightarrow\)IA = ND ( 2 cạnh tương ứng )
Ta có : IB + AI = AB nên IB = AB - AI
Ta lại có : MN + ND = MD nên MN = MD - ND
Mà AB = MD và AI = ND
\(\Rightarrow\)IB = MN
Câu 2:
a: Xét ΔABM và ΔDCM có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔABM=ΔDCM
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
DO đó: ABDC là hình bình hành
Suy ra: AB//DC
c: ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao