K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 9 2021

Áp dụng hệ thức lượng trong tam giác vuông ABH với đường cao BM:

\(AH^2=AM.AB\) (1)

Áp dụng hệ thức lượng trong tam giác vuông ACH với đường cao CN:

\(AH^2=AN.AC\) (2)

(1);(2)\(\Rightarrow AM.AB=AN.AC\)

NV
19 tháng 9 2021

undefined

Bài 2: 

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB,ta được:

\(AM\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC, ta được:

\(AN\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

b) Xét tứ giác AMHN có 

\(\widehat{NAM}=90^0\)

\(\widehat{ANH}=90^0\)

\(\widehat{AMH}=90^0\)

Do đó: AMHN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

Suy ra: AH=MN

Ta có: \(AM\cdot AB+AN\cdot AC\)

\(=AH^2+AH^2\)

\(=2AH^2=2\cdot MN^2\)

15 tháng 7 2023

câu c,d bài 2

16 tháng 10 2023

a: BC=BH+CH

=4+9=13

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH^2=4\cdot9=36\)

=>AH=6

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{4\cdot13}=2\sqrt{13}\\AC=\sqrt{9\cdot13}=3\sqrt{13}\end{matrix}\right.\)

b: ΔHAB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

ΔHAC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1), (2) suy ra \(AM\cdot AB=AN\cdot AC\)

16 tháng 10 2023

Có hình vẽ ko ạ

23 tháng 11 2023

a: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

b: \(AM\cdot AB=AN\cdot AC\)

=>\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Xét ΔAMN và ΔACB có

\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
\(\widehat{MAN}\) chung

Do đó: ΔAMN đồng dạng với ΔACB

11 tháng 10 2023

loading...

Do M, N lần lượt là hình chiếu của H lên AB, AC

⇒ HM ⊥ AB và HN ⊥ AC

∆AHB vuông tại H có HM là đường cao

⇒ AH² = AM.AB (1)

∆AHC vuông tại C có HN là đường cao

⇒ AH² = AN.AC (2)

Từ (1) và (2) ⇒ AM.AB = AN.AC

22 tháng 10 2021

b: Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

22 tháng 10 2021

bạn ơi còn câu a với câu c đâu ạ ?

24 tháng 6 2021

c) Vì tam giác ABC vuông tại A \(\Rightarrow AMHN\) là hình chữ nhật

Ta có: \(\dfrac{S_{BMNC}}{S_{ABC}}=\dfrac{S_{ABC}-S_{AMN}}{S_{ABC}}=1-\dfrac{S_{AMN}}{S_{ABC}}\)

Ta có: \(\dfrac{S_{AMN}}{S_{ABC}}=\dfrac{\dfrac{1}{2}.AM.AN}{\dfrac{1}{2}.AB.AC}=\dfrac{AM.AN}{AB.AC}=\dfrac{AM.AB.AN.AC}{\left(AB.AC\right)^2}\)

\(=\dfrac{AH^2.AH^2}{\left(AH.BC\right)^2}=\dfrac{AH^4}{\left(AH.BC\right)^2}=\dfrac{AH^2}{BC^2}\)

Ta có \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{6^2}+\dfrac{1}{8^2}\Rightarrow AH=\dfrac{24}{5}\left(cm\right)\)

\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\)

\(\Rightarrow\dfrac{S_{AMN}}{S_{ABC}}=\dfrac{\left(\dfrac{24}{5}\right)^2}{10^2}=\dfrac{144}{625}\Rightarrow\dfrac{S_{BMNC}}{S_{ABC}}=1-\dfrac{144}{625}=\dfrac{481}{625}\)

d) Ta có: \(\angle ANH+\angle AMH=90+90=180\Rightarrow AMHN\) nội tiếp

\(\Rightarrow\angle ANM=\angle AHM=\angle ABC\left(=90-\angle BHM\right)\)

\(\Rightarrow BMNC\) nội tiếp 

\(\Rightarrow\) 4 đường trung trực của các đoạn thẳng BM,MN,NC,CB đồng quy

undefined

24 tháng 6 2021

cho mình hỏi là câu d bài này có cách nào khác cách tứ giác nội tiếp không ?

4 tháng 7 2023

A B C H M N

a/

Xét tg vuông ABH

\(AH^2=AM.AB\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

Xét tg vuông ACH có

\(AH^2=AN.AC\) (lý do như trên)

\(\Rightarrow AM.AB=AN.AC\)

b/

\(AN\perp AB;MH\perp AB\) => AN//MH

\(AM\perp AC;NH\perp AC\) => AM//NH

=> AMHN là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một)

Mặt khác \(\widehat{A}=90^o\)

=> AMHN là HCN => AM=NH; AN=MH (cạnh đối HCN)

Xét tg vuông ABH và tg vuông ACH có

\(\widehat{BAH}=\widehat{ACB}\) (cùng phụ với \(\widehat{ABC}\) )

=> tg ABH đồng dạng với tg ACH

\(\Rightarrow\left(\dfrac{AB}{AC}\right)^2=\dfrac{S_{ABH}}{S_{ACH}}\) (hai tg đồng dạng, tỷ số 2 diện tích bằng bình phương tỷ số đồng dạng)

\(\Rightarrow\left(\dfrac{AB}{AC}\right)^2=\dfrac{\dfrac{1}{2}.AB.MH}{\dfrac{1}{2}.AC.NH}\Rightarrow\dfrac{AB}{AC}=\dfrac{MH}{NH}\) lập phương 2 vế

\(\dfrac{AB^3}{AC^3}=\dfrac{MH^2.MH}{NH^2.NH}\) (1)

Xét tg vuông ABH

\(MH^2=BM.AM\) (trong tg vuông bình phương đường cao hạ tử đỉnh góc vuông bằng tích giữa hai hình chiếu của 2 cạnh góc vuông trên cạnh huyền) (2)

Xét tg vuông ACH, c/m tương tự

\(NH^2=CN.AN\) (3)

Thay (2) và (3) vào (1)

(1) \(\Leftrightarrow\dfrac{AB^3}{AC^3}=\dfrac{BM.AM.MH}{CN.AN.NH}\)

Mà AM = NH; AN = MH (cmt)

\(\Rightarrow\dfrac{AB^3}{AC^3}=\dfrac{BM}{CN}\)