Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dăm ba cái toán 7
1 ) a ) Ta có f(x) = 2x2 - 3
=> f(-1) = 2. ( -1 ) . 2 - 3 = -7
b ) Ta có : f ( x ) = 2x2 - 3
=> f ( 1/2 ) = 2 . ( 1/2 ) . 2 - 3 = -1
2 ) Tổng số tỉ lệ của 3 loại : 3 + 5 + 2 = 10
Số HS giỏi : 40 : 10 x 3 = 12
Số HS khá : 40 : 10 x 5 = 20
Số HS trung bình : 40 : 10 x 2 = 8
4 ) tg là tam giác nha
1) Xét tgMAB và tgMEC , có :
góc M1 = góc M2 ( 2 góc đối đỉnh )
AM = EM ( gt )
MB = MC ( M là trung điểm của BC )
Do đó : tgMAB = tg MEC ( c - g - c )
2 ) Xét tgACM và tgBEM , có :
AM = EM ( gt )
BM = CM ( M là trung điểm của BC )
góc M3 = góc M4 ( 2 góc đối đỉnh )
Do đó : tg ACM = tg BEM ( c - g - c )
=> góc C1 = góc B1 ( 2 góc tương ứng )
=> AC // BE ( có 2 góc so le trong bằng nhau ( C1 = B1 ) )
3 ) Xét tgBMI và tgKMC , có :
BI = CK ( gt )
BM = CM ( M là trung điểm của BC )
gócB2 = gócC2 ( 2 góc tương ứng của tgMAB = tgMEC )
Do đó : tgBMI = tgKMC ( c - g - c )
mà BC là một đường thẳng và đi qua M( M là trung điểm của BC )
=> IK cũng là một đường thẳng và đi qua M
Do đó : 3 điểm I , M , K thẳng hàng
1 ) a ) Ta có f(x) = 2x2 - 3
=> f(-1) = 2. ( -1 ) . 2 - 3 = -7
b ) Ta có : f ( x ) = 2x2 - 3
=> f ( 1/2 ) = 2 . ( 1/2 ) . 2 - 3 = -1
2 ) Tổng số tỉ lệ của 3 loại : 3 + 5 + 2 = 10
Số HS giỏi : 40 : 10 x 3 = 12
Số HS khá : 40 : 10 x 5 = 20
Số HS trung bình : 40 : 10 x 2 = 8
4 ) tg là tam giác nha
1) Xét tgMAB và tgMEC , có :
góc M1 = góc M2 ( 2 góc đối đỉnh )
AM = EM ( gt )
MB = MC ( M là trung điểm của BC )
Do đó : tgMAB = tg MEC ( c - g - c )
2 ) Xét tgACM và tgBEM , có :
AM = EM ( gt )
BM = CM ( M là trung điểm của BC )
góc M3 = góc M4 ( 2 góc đối đỉnh )
Do đó : tg ACM = tg BEM ( c - g - c )
=> góc C1 = góc B1 ( 2 góc tương ứng )
=> AC // BE ( có 2 góc so le trong bằng nhau ( C1 = B1 ) )
3 ) Xét tgBMI và tgKMC , có :
BI = CK ( gt )
BM = CM ( M là trung điểm của BC )
gócB2 = gócC2 ( 2 góc tương ứng của tgMAB = tgMEC )
Do đó : tgBMI = tgKMC ( c - g - c )
mà BC là một đường thẳng và đi qua M( M là trung điểm của BC )
=> IK cũng là một đường thẳng và đi qua M
Do đó : 3 điểm I , M , K thẳng hàng
1/
a/ Vì x và y tỉ lệ nghịch với nhau
=> xy = a
Mà khi x = 4 thì y = 6 => 4.6 = a => a = 24
b/ \(y=\frac{24}{x}\)
c/ Khi x = 1 => y = \(\frac{24}{1}=24\).
2/ Gọi x, y, z (cm) lần lượt là độ dài ba cạnh của một tam giác. (x, y, z > 0)
Vì độ dài ba cạnh của một tam giác tỉ lệ thuận với 3, 4, 5
=> \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)và x + y + z = 60
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{60}{12}=5\)
=> \(\hept{\begin{cases}\frac{x}{3}=5\\\frac{y}{4}=5\\\frac{z}{5}=5\end{cases}\Rightarrow\hept{\begin{cases}x=15\\y=20\\z=25\end{cases}}}\).
Vậy độ dài ba cạnh của tam giác lần lượt là 15cm, 20cm, 25cm.
Gọi số Hs giỏi, khá và TB lần lượt là a,b,c.
Theo đề bài ta có: b+c-a = 180
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{b+c-a}{3+5-2}=\frac{180}{6}=30\)
- => a = 60
- => b = 90
- => c = 150
=> Vậy số HS giỏi là 60, HS khá là 90 và HS trung bình là 150
Gọi 3 cạnh của tam giác lần lượt là a, b , c
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{45}{9}=5\)
- Từ \(\frac{a}{2}=5\) => a = 2.5 = 10
- Từ\(\frac{b}{3}=5\) => b = 3.5 = 15
- Từ \(\frac{c}{4}=5\) => c= 4.5 = 20
=> Ba cạnh của tam giác lần lượt là 10cm, 15cm và 20cm
\(\text{Câu 1 : Tự tính}\)
\(\text{Câu 2:a)Cho x = 1 ;ta có : y = 3.1 = 3}\)
\(\text{Lấy điểm A (}1;3)\)
A y 3 0 x.y = 3x 1 x
3. Gọi a,b,c là số tiền lãi của mỗi người \((\text{triệu đồng})\)
Theo đề bài , ta có :
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\text{ và }a+b+c=105(\text{triệu})\)
\(\text{Áp dụng tính chất dãy tỉ sô bằng nhau , ta có :}\)
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+7}=\frac{105}{15}=7\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{3}=7\\\frac{b}{5}=7\\\frac{c}{7}=7\end{cases}}\Rightarrow\hept{\begin{cases}a=21(\text{triệu})\\b=35(\text{triệu})\\c=49(\text{triệu})\end{cases}}\)
Vậy
\(\text{Bài 4,5 : Bạn tự làm nhé }\)
Chúc bạn học tốt :>
Câu 5:
Gọi số điểm tốt của ba lớp 7A, 8A, 9A lần lượt là \(a,b,c\)(tốt) \(a,b,c\inℕ^∗\).
Vì số điểm tốt của ba chi đội lần lượt tỉ lệ với \(9,7,8\)nên \(\frac{a}{9}=\frac{b}{7}=\frac{c}{8}\).
Tổng số điểm tốt là \(120\)nên \(a+b+c=120\).
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{9}=\frac{b}{7}=\frac{c}{8}=\frac{a+b+c}{9+7+8}=\frac{120}{24}=5\)
\(\Leftrightarrow\hept{\begin{cases}a=5.9=45\\b=5.7=35\\b=5.8=40\end{cases}}\).
Câu 4:
Gọi độ dài ba cạnh của tam giác lần lượt là \(a,b,c\left(cm\right)\)\(a,b,c>0\).
Các cạnh của tam giác có số đo tỉ lệ với \(3,4,5\)nên \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\).
Chu vi của tam giác là \(13,2cm\)nên \(a+b+c=13,2\).
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{13,2}{12}=1,1\)
\(\Leftrightarrow\hept{\begin{cases}a=1,1.3=3,3\\b=1,1.4=4,4\\c=1,1.5=5,5\end{cases}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{2}=\dfrac{3c-b}{3\cdot2-4}=\dfrac{6}{2}=3\)
Do đó: a=9; b=12; c=6
Gọi số hs xuất sắc 7A,7B,7C lần lượt là a,b,c∈N*
Áp dụng tc dtsbn:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{2}=\dfrac{3c-b}{6-4}=\dfrac{6}{2}=3\\ \Rightarrow\left\{{}\begin{matrix}a=9\\b=12\\c=6\end{matrix}\right.\)
Vậy ...