\(\wid...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2019

giỏi quá :3

31 tháng 7 2019

Bài này dễ mà

23 tháng 10 2019

A B C D 80^o 40^o 1 2
GT \(\Delta ABC\)có
       \(\widehat{A}\)= 80o
       \(\widehat{B}\)= 40o
       Tia phân giác của \(\widehat{C}\)cắt AD
KL   \(\widehat{CDA}?\)\(\widehat{CDB}?\)
Giải: 
Trong \(\Delta\)ABC có: \(\widehat{A}+\widehat{B}+\widehat{C}\)= 180o (Định lí)
=> \(\widehat{C}=180^o-\left(\widehat{A}+\widehat{B}\right)\)
Mà \(\widehat{A}=80^o\)(GT)
      \(\widehat{B}=40^o\)(GT)
Ngoặc ''}'' 3 điều trên
=> \(\widehat{C}=180^o-\left(80^o+40^o\right)\)
=> \(\widehat{C}=180^o-120^o=60^o\)(1)
Vì CD là tia phân giác của \(\widehat{C}\)
=> \(\widehat{C_1}=\widehat{C_2}=\frac{\widehat{C}}{2}\)(Tính chất)
Mà \(\widehat{C}=60^o\)(Theo (1))
Ngoặc ''}'' 2 điều trên
=> \(\widehat{C_1}=\widehat{C_2}=\frac{60^o}{2}=30^o\)(2)
\(\widehat{CDB}\)là góc ngoài đỉnh D của \(\Delta CAD\)
=> \(\widehat{CDB}=\widehat{A}+\widehat{C_1}\)(Định lí)
Mà \(\widehat{A}=80^o\)(GT)
      \(\widehat{C_1}=30^o\)(Theo (2))
Ngoặc ''}'' 3 điều trên
=> \(\widehat{CDB}=80^o+30^o=110^o\)
\(\widehat{CDA}\)là góc ngoài đỉnh D của \(\Delta CBD\)
=> \(\widehat{CDA}=\widehat{B}+\widehat{C_2}\)(Định lí)
Mà \(\widehat{B}=40^o\)(GT)
      \(\widehat{C_2}=30^o\)(Theo (2))
Ngoặc ''}'' 3 điều trên
=> ​​\(\widehat{CDA}=40^o+30^o=70^o\)
V
ậy \(\widehat{CDA}\) = 70o; \(\widehat{CDB}\) = 110o
 

19 tháng 10 2019

KHÙNG

19 tháng 10 2019

ừ thì ko cần vẽ hình nữa

7 tháng 11 2019

A B C D 1 2

Do \(\widehat{B}=\widehat{C};\widehat{A_1}=\widehat{A_2}\Rightarrow\widehat{BDA}=\widehat{CDA}\)

\(\Rightarrow\Delta ABD=ACD\left(g.c.g\right)\Rightarrow AB=AC\)

4 tháng 12 2019

Xét \(\Delta AIC\)\(\Delta ABC\)Ta có : \(\frac{A}{2}+\frac{C}{2}+I=A+B+C=180^0\)

\(=>A+B+C-\frac{A}{2}-\frac{C}{2}-I=0\)

\(=>\frac{A}{2}+\frac{C}{2}+B-I=0\)

Vì \(\frac{A}{2}+\frac{B}{2}+\frac{C}{2}=90^0\)(Nửa tam giác)

\(=>\frac{A}{2}+\frac{C}{2}+\frac{B}{2}+\frac{B}{2}-I=0\)

\(=>90^0+30^0=I\)

\(=>I=120^0\)Hay \(AIC=120^0\)