Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
A = \(\dfrac{2017}{2019}=1-\dfrac{2}{2019}\)
B= \(\dfrac{2019}{2021}\) = 1- \(\dfrac{2}{2021}\)
Ta có:
\(\dfrac{2}{2019}>\dfrac{2}{2021}\)
=> 1- \(\dfrac{2}{2019}< 1-\dfrac{2}{2021}\)
=> \(\dfrac{2017}{2019}< \dfrac{2019}{2021}\)
Lại có \(\dfrac{1}{2}< \dfrac{2}{3}\)
=>\(\dfrac{2017}{2019}+\dfrac{1}{2}< \dfrac{2019}{2021}+\dfrac{2}{3}\)
Vậy A<B
\(A=2018\times2020+2021\) và \(B=2019\times2019+2021\)
\(A=2018\times2019+2018+2021\)
\(B=2018\times2019+2019+2021\)
Vì \(2019>2018\Rightarrow A< B\)
1/3+1/15+1/35+1/63+1/99+1/143+1/195
=1/1*3+1/3*5+1/5*7+1/7*9+1/9*11+1/11*13+1/13*15
suy ra 2(1/1*3+1/3*5+1/5*7+1/7*9+1/9*11+1/11*13+1/13*15)
=2/1*3+2/3*5+2/5*7+2/7*9+2/9*11+2/11*13+2/13*15
=1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11+1/11-1/13+1/13-1/15
=1-1/15
=14/15
a=14/15 chia 2=7/15
\(A=2019\cdot2019\)
\(B=2017\cdot2021=\left(2019-2\right)\left(2019+2\right)=2019\cdot2019+2019\cdot2-2019\cdot2-2\cdot2=2019\cdot2019-2\cdot2\)
Vậy A > B
ta có :
\(A=\frac{2017}{2019}+\frac{1}{2}=1-\frac{2}{2019}+1-\frac{1}{2}< 1-\frac{2}{2021}+1-\frac{1}{3}=\frac{2019}{2021}+\frac{2}{3}=B\)
Vậy A<B ta chọn đáp án C
A=20192017+21=1−20192+1−21<1−20212+1−31=20212019+32=B
Vậy A<B ta chọn đáp án C