K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2018

Bài 1:

Ta có:

\(N=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)

Do \(\hept{\begin{cases}\frac{2017}{2018+2019}< \frac{2017}{2018}\\\frac{2018}{2018+2019}< \frac{2018}{2019}\end{cases}\Rightarrow\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}}\)

                                                     \(\Leftrightarrow N< M\)

Vậy \(M>N.\)

Bài 2:

Ta có:

\(A=\frac{2017}{987653421}+\frac{2018}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}\)

\(B=\frac{2018}{987654321}+\frac{2017}{24681357}=\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)

Do \(\hept{\begin{cases}\frac{2017}{987654321}+\frac{2017}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}\\\frac{1}{24681357}>\frac{1}{987654321}\end{cases}}\)

\(\Rightarrow\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}>\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)

                                                                     \(\Leftrightarrow A>B\)

Vậy \(A>B.\)

Bài 3:

\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}=1-\frac{1}{2017}+1-\frac{1}{2018}+1-\frac{1}{2019}+1+\frac{3}{2016}\)

                                                                \(=1+1+1+1-\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}+\frac{3}{2016}\)

                                                                \(=4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)\)

Do \(\hept{\begin{cases}\frac{1}{2017}< \frac{1}{2016}\\\frac{1}{2018}< \frac{1}{2016}\\\frac{1}{2019}< \frac{1}{2016}\end{cases}\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}< \frac{1}{2016}+\frac{1}{2016}+\frac{1}{2016}=\frac{3}{2016}}\)

\(\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\)âm

\(\Rightarrow4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)>4\)

Vậy \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}>4.\)

Bài 4:

\(\frac{1991.1999}{1995.1995}=\frac{1991.\left(1995+4\right)}{\left(1991+4\right).1995}=\frac{1991.1995+1991.4}{1991.1995+4.1995}\)

Do \(\hept{\begin{cases}1991.1995=1991.1995\\1991.4< 1995.4\end{cases}}\Rightarrow1991.1995+1991.4< 1991.1995+1995.4\)

\(\Rightarrow\frac{1991.1995+1991.4}{1991.1995+4.1995}< \frac{1991.1995+1995.4}{1991.1995+4.1995}=1\)

\(\Rightarrow\frac{1991.1999}{1995.1995}< 1\)

Vậy \(\frac{1991.1999}{1995.1995}< 1.\)

29 tháng 7 2018

vì  2016/ 2017<1 ,

2017/ 2018 <1

2018 /2019<1

=>  2016/ 2017 + 2017/ 2018 + 2018 / 2019<1+1+1=3

vậy A = 2016/ 2017 + 2017/ 2018 + 2018 / 2019 < 3

8 tháng 6 2019

#)Giải :

\(Q=2+\frac{2016}{2017+2018+2019}+\frac{2017}{2017+2018+2019}+\frac{2018}{2017+2018+2019}\)

Ta thấy : \(2>\frac{2016}{2017};2>\frac{2017}{2018};2>\frac{2018}{2019}\left(1\right)\)

\(\frac{2016}{2017+2018+2019}< \frac{2016}{2017}\left(2\right)\)

\(\frac{2017}{2017+2018+2019}< \frac{2017}{2018}\left(3\right)\)

\(\frac{2018}{2017+2018+2019}< \frac{2018}{2019}\left(4\right)\)

Từ (1) (2) (3) (4) \(\Rightarrow P>Q\)

25 tháng 6 2018

a) \(\frac{1995}{1997}\)và \(\frac{1995}{1996}\)

Ta có : \(\frac{1995}{1996}=\frac{1995\times2}{1996\times2}=\frac{3990}{3992}\)

\(1-\frac{1995}{1997}=\frac{2}{1997};1-\frac{3990}{3992}=\frac{2}{3992}\)

Vì \(\frac{2}{1997}>\frac{2}{3992}\)nên \(\frac{1995}{1997}< \frac{3990}{3992}\)hay \(\frac{1995}{1997}< \frac{1995}{1996}\).

b) \(\frac{2016}{2017}\)và \(\frac{2017}{2018}\)

Ta có : \(1-\frac{2016}{2017}=\frac{1}{2017};1-\frac{2017}{2018}=\frac{1}{2018}\)

Vì \(\frac{1}{2017}>\frac{1}{2018}\)nên \(\frac{2016}{2017}< \frac{2017}{2018}\).

c) \(\frac{2018}{2019}\)và \(\frac{2017}{2016}\).

Vì \(\frac{2018}{2019}< 1;1< \frac{2017}{2016}\)nên \(\frac{2018}{2019}< \frac{2017}{2016}\).

~ HOK TỐT ~

25 tháng 6 2018

a)\(\frac{1995}{1997}\)<   \(\frac{1995}{1996}\)

b)\(\frac{2016}{2017}\)<    \(\frac{2017}{2018}\)

c)\(\frac{2018}{2019}\)<     \(\frac{2017}{2016}\)

26 tháng 6 2017

Ta có : \(\frac{n+1}{n+2}=1-\frac{1}{n+2}\)

            \(\frac{n+3}{n+4}=1-\frac{1}{n+4}\)

Mà \(\frac{1}{n+2}>\frac{1}{n+4}\)

Nne : \(\frac{n+1}{n+2}< \frac{n+3}{n+4}\)

DD
24 tháng 2 2021

\(\frac{3}{n-2018}+\frac{2}{n-2019}+\frac{1}{n-2020}=3\)

\(\Leftrightarrow\frac{3}{n-2018}-1+\frac{2}{n-2019}-1+\frac{1}{n-2020}-1=0\)

\(\Leftrightarrow\frac{3-\left(n-2018\right)}{n-2018}+\frac{2-\left(n-2019\right)}{n-2019}+\frac{1-\left(n-2020\right)}{n-2020}=0\)

\(\Leftrightarrow\frac{2021-n}{n-2018}+\frac{2021-n}{n-2019}+\frac{2021-n}{n-2020}=0\)

\(\Leftrightarrow\left(2021-n\right)\left(\frac{1}{n-2018}+\frac{1}{n-2019}+\frac{1}{n-2020}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2021-n=0\left(1\right)\\\frac{1}{n-2018}+\frac{1}{n-2019}+\frac{1}{n-2020}=0\left(2\right)\end{cases}}\)

Giải \(\left(1\right)\Leftrightarrow n=2021\).

Giải \(\left(2\right)\)

- Với \(n< 2018\)thì: \(\frac{1}{n-2018}< 0,\frac{1}{n-2019}< 0,\frac{1}{n-2020}< 0\)nên phương trình vô nghiệm. 

- Với \(n=2018,n=2019,n=2020\)không thỏa điều kiện xác định. 

- Với \(n>2020\)thì \(\frac{1}{n-2018}>0,\frac{1}{n-2019}>0,\frac{1}{n-2020}>0\) nên phương trình vô nghiệm. 

15 tháng 7 2018

\(A=\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}=\left(1-\frac{1}{2017}\right)+\left(1-\frac{1}{2018}\right)+\left(1-\frac{1}{2019}\right)\)

\(A=3-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)< 3\)

15 tháng 7 2018

Ta có :

2016/2017 < 1

2017/2018 < 1

2018/2019 < 1

Mà 2016/2017 + 2017/2018 + 2018/2019 < 1 + 1 + 1 = 3

Nên A < 3

15 tháng 7 2018

\(A=\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}\)

Ta có:

 \(\frac{2016}{2017}< 1\)

\(\frac{2017}{2018}< 1\)

\(\frac{2018}{2019}< 1\)

\(\Rightarrow\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}< 1+1+1=3\)

\(\Rightarrow A< 3\)

Vậy \(A< 3\)

Tham khảo nhé

15 tháng 7 2018

\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}\)

\(=1-\frac{1}{2017}+1-\frac{1}{2018}+1-\frac{1}{2019}\)

\(=\left(1+1+1\right)-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)

\(=3-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)< 3\)

Vậy \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}< 3\left(đpcm\right)\)