Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
A B C D E F
Tam giác ABC đều => AB = AC = BC
Mà D , F , E lần lượt là các trung điểm của AB ,BC , CA.
=> AD = AF = FC = CE = BE = BD. (1)
=> góc A = góc B = góc C = 60\(^o\)
=> Tam giác ADF đều vì AD = AF ( cmt) ; góc A = 60\(^o\). (2)
Tương tự, tam giác BDE đều vì BD = BE (cmt); góc B = 60\(^o\) (3)
Tam giác CFE đều vì góc C = 60\(^o\); CF = CE. (cmt).(4)
Từ (1), (2), (3) , (4) => DF = FE = DE.( ĐPCM)
Mình chỉ giải cko bạn 1 bài thôi nha , tại mình đang bận chút!!!!
Chúc bạn học tốt!!!
Bài 1:
a: Xét ΔCAB và ΔCDE có
CA=CD
góc ACB=góc DCE
CB=CE
Do đó: ΔCAB=ΔCDE
b: Xét tứ giác ABDE có
C là trung điểm chung của AD và BE
nên ABDE là hình bình hành
Suy ra: AB//DE
c: Xét tứ giác BEDF có
BE//DF
BF//DE
Do đó: BEDF là hình bình hành
Suy ra: BE=DF
Hình bạn tự vẽ nha!
Bài 3:
a) Xét \(\Delta ABC\) có:
\(AB=AC\left(gt\right)\)
=> \(\Delta ABC\) cân tại \(A.\)
=> \(\widehat{ABC}=\widehat{ACB}\) (tính chất tam giác cân)
b) Vì \(BM=CN\left(gt\right).\)
=> \(BM+BC=BC+CN\)
=> \(MC=BN.\)
Xét 2 \(\Delta\) \(ABN\) và \(ACM\) có:
\(AB=AC\left(gt\right)\)
\(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)
\(BN=CM\left(cmt\right)\)
=> \(\Delta ABN=\Delta ACM\) (c . g . c)
=> \(AN=AM\) (2 cạnh tương ứng).
c) Theo câu b) ta có \(AN=AM.\)
=> \(\Delta AMN\) cân tại \(A.\)
=> \(\widehat{M}=\widehat{N}\) (tính chất tam giác cân).
Xét 2 \(\Delta\) vuông \(EBM\) và \(FCN\) có:
\(\widehat{MEB}=\widehat{CFN}=90^0\left(gt\right)\)
\(\widehat{M}=\widehat{N}\left(cmt\right)\)
\(BM=CN\left(gt\right)\)
=> \(\Delta EBM=\Delta FCN\) (cạnh huyền - góc nhọn)
=> \(BE=CF\) (2 cạnh tương ứng).
=> \(ME=NF\) (2 cạnh tương ứng).
d) Đề là chứng minh \(AE=AF.\)
Ta có: \(\left\{{}\begin{matrix}AM=AN\left(cmt\right)\\ME=NF\left(cmt\right)\end{matrix}\right.\)
=> \(AM-ME=AN-NF.\)
=> \(AE=AF\left(đpcm\right).\)
Mình chỉ nghĩ thêm câu d) thôi nhé.
Chúc bạn học tốt!
Bài 1 :
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{z}=\frac{x+y+z}{y+z+x}=1\) ( Do \(x+y+z\ne0\) )
\(\Rightarrow x=y=z\)
Thay \(y\) và \(z\) bởi \(x\) ta được :
\(\frac{x^{3333}.z^{6666}}{y^{9999}}=\frac{x^{3333}.x^{6666}}{x^{9999}}=\frac{x^{9999}}{x^{9999}}=1\)
Vậy : \(\frac{x^{3333}.z^{6666}}{y^{9999}}=1\)
a, xét tam giác ABE và tam giác DBE có
AB=BD(gt)
BE chung
góc ABE= góc DBE(gt)
Vậy tam giác ABE= tam giác DBE(c.g.c)
suy ra AE=DE(đpcm)
a) Xét \(\Delta ABC\) có:
\(AB=AC\left(gt\right)\)
=> \(\Delta ABC\) cân tại A.
=> \(\widehat{ABC}=\widehat{ACB}\) (tính chất tam giác cân).
b) Ta có: \(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)
Mà \(\widehat{ECK}=\widehat{ACB}\) (vì 2 góc đối đỉnh).
=> \(\widehat{ABC}=\widehat{ECK}.\)
Hay \(\widehat{DBH}=\widehat{ECK}.\)
Xét 2 \(\Delta\) vuông \(DBH\) và \(ECK\) có:
\(\widehat{DHB}=\widehat{EKC}=90^0\left(gt\right)\)
\(DB=EC\left(gt\right)\)
\(\widehat{DBH}=\widehat{ECK}\left(cmt\right)\)
=> \(\Delta DBH=\Delta ECK\) (cạnh huyền - góc nhọn).
=> \(DH=EK\) (2 cạnh tương ứng).
c) Xét 2 \(\Delta\) vuông \(DHI\) và \(EKI\) có:
\(\widehat{DHI}=\widehat{EKI}=90^0\)
\(DH=EK\left(cmt\right)\)
\(\widehat{DIH}=\widehat{EIK}\) (vì 2 góc đối đỉnh)
=> \(\Delta DHI=\Delta EKI\) (cạnh góc vuông - góc nhọn kề).
=> \(DI=EI\) (2 cạnh tương ứng).
=> \(I\) là trung điểm của \(DE\left(đpcm\right).\)
Chúc bạn học tốt!
Bài 1:
a) Sai đề rồi bạn, đáng lý ra phải là AB=AF mới đúng
Xét ΔABE vuông tại E(AD⊥BE) và ΔAFE vuông tại E(AD⊥BE,F∈BE) có
AE chung
\(\widehat{BAE}=\widehat{FAE}\)(do AE là tia phân giác của góc A)
Do đó: ΔABE=ΔAFE(cạnh góc vuông, góc nhọn kề)
⇒AB=AF(hai cạnh tương ứng)
b) Xin lỗi bạn, mình chỉ biết làm theo cách lớp 8 thôi nhé
Xét tứ giác HFKD có HF//DK(do HF//BC,D∈BC) và HF=DK(gt)
nên HFKD là hình bình hành(dấu hiệu nhận biết hình bình hành)
⇒HD//KF và HD=KF(hai cạnh đối trong hình bình hành HFKD)
c)
Xét ΔABC có AB<AC(gt)
mà góc đối diện với cạnh AB là góc C
và góc đối diện với cạnh AC là góc B
nên \(\widehat{C}< \widehat{B}\)(định lí về quan hệ giữa cạnh và góc đối diện trong tam giác)
hay \(\widehat{ABC}>\widehat{C}\)(đpcm)
Câu 1:
Hình (chỉ mag t/c minh họa)
A B C E D
a) Xét \(\Delta ABE\) và \(\Delta DBE\) có:
\(AB=AD\left(gt\right)\)
\(\widehat{B_1}=\widehat{B_2}\) (BE là phân giác \(\widehat{B}\))
\(BE\) chung
\(\Rightarrow\Delta ABE=\Delta DBE\left(c.g.c\right)_{\left(1\right)}.\)
Từ \(_{\left(1\right)}\Rightarrow EA=ED\) (2 cạnh tương ứng).
Vậy..........
b) (chưa chắc đã đúng)
Từ \(_{\left(1\right)}\Rightarrow\widehat{A}=\widehat{BDE}\) (2 góc tương ứng)
Xét \(\Delta ABC\) có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) (định lí tổng 3 góc của tam giác).
mà \(\widehat{B}=70^o\left(gt\right);\widehat{C}=50^o\left(gt\right).\)
\(\Rightarrow\widehat{A}=180^o-\widehat{B}-\widehat{C}.\)
\(\Rightarrow\widehat{A}=180^o-70^o-50^o.\)
\(\Rightarrow\widehat{A}=60^o.\)
mà \(\widehat{A}=\widehat{BDE}\left(cmt\right).\)
\(\Rightarrow\widehat{BDE}=60^o.\)
Vậy..........
bạn không lám ý c) hả bạn