Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xác định khi x khác +-1
b)
\(A=\left(\frac{\left(2x+1\right).\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{8}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\right).\frac{\left(x-1\right)}{\left(x+1\right)}\)
\(A=\left(\frac{\left(2x^2+3x+1\right)+8-\left(x^2-2x+1\right)}{\left(x-1\right)\left(x+1\right)}\right).\frac{\left(x-1\right)}{\left(x+1\right)}=\frac{x^2+5x+8}{\left(x-1\right)\left(x+1\right)}.\frac{x-1}{x+1}\)
\(A=\frac{x^2+5x+8}{\left(x+1\right)^2}=1+\frac{3\left(x+1\right)+4}{\left(x+1\right)^2}\)
c)
GTNN \(B=\frac{3y+4}{y^2}\ge-\frac{9}{16}\)
GTNN \(A=\frac{7}{16}\)
a/ đk:\(x\ne\pm2;x\ne1\)\(x\ne0\)
b/A=\(\left(\frac{2+x}{2-x}-\frac{2-x}{2+x}-\frac{4}{x-2}.\frac{x^2}{x+2}\right):\frac{x-1}{2x-x^2}\)
=\(\frac{\left(x+2\right)^2-\left(2-x\right)^2+4x^2}{\left(2-x\right)\left(x+2\right)}:\frac{x-1}{2x-x^2}\)=\(\frac{4x^2+8x}{\left(x+2\right)\left(2-x\right)}.\frac{x\left(2-x\right)}{x-1}=\frac{4x^2}{x-1}\)
vậy...
c/ ta có: x=1(loại)=> biểu thức k xác định
thay x=-3(tm) vào biểu thức A ta có:
\(\frac{4x^2}{x-1}=\frac{4.9}{-3-1}=-9\)
vậy...
d/để A=0 thì:\(\frac{4x^2}{x-1}=0\Leftrightarrow4x^2=0\Leftrightarrow x=0\)(tm)
vậy...
Bài 1:
a) x≠2x≠2
Bài 2:
a) x≠0;x≠5x≠0;x≠5
b) x2−10x+25x2−5x=(x−5)2x(x−5)=x−5xx2−10x+25x2−5x=(x−5)2x(x−5)=x−5x
c) Để phân thức có giá trị nguyên thì x−5xx−5x phải có giá trị nguyên.
=> x=−5x=−5
Bài 3:
a) (x+12x−2+3x2−1−x+32x+2)⋅(4x2−45)(x+12x−2+3x2−1−x+32x+2)⋅(4x2−45)
=(x+12(x−1)+3(x−1)(x+1)−x+32(x+1))⋅2(2x2−2)5=(x+12(x−1)+3(x−1)(x+1)−x+32(x+1))⋅2(2x2−2)5
=(x+1)2+6−(x−1)(x+3)2(x−1)(x+1)⋅2⋅2(x2−1)5=(x+1)2+6−(x−1)(x+3)2(x−1)(x+1)⋅2⋅2(x2−1)5
=(x+1)2+6−(x2+3x−x−3)(x−1)(x+1)⋅2(x−1)(x+1)5=(x+1)2+6−(x2+3x−x−3)(x−1)(x+1)⋅2(x−1)(x+1)5
=[(x+1)2+6−(x2+2x−3)]⋅25=[(x+1)2+6−(x2+2x−3)]⋅25
=[(x+1)2+6−x2−2x+3]⋅25=[(x+1)2+6−x2−2x+3]⋅25
=[(x+1)2+9−x2−2x]⋅25=[(x+1)2+9−x2−2x]⋅25
=2(x+1)25+185−25x2−45x=2(x+1)25+185−25x2−45x
=2(x2+2x+1)5+185−25x2−45x=2(x2+2x+1)5+185−25x2−45x
=2x2+4x+25+185−25x2−45x=2x2+4x+25+185−25x2−45x
=2x2+4x+2+185−25x2−45x=2x2+4x+2+185−25x2−45x
=2x2+4x+205−25x2−45x=2x2+4x+205−25x2−45x
c) tự làm, đkxđ: x≠1;x≠−1
Câu 1:
\(Tacó\)
\(\frac{2}{2x-1}+\frac{4x^2+1}{4x^2-1}-\frac{1}{2x+1}=\frac{2}{2x-1}+\frac{4x^2+1}{\left(2x+1\right)\left(2x-1\right)}-\frac{1}{2x+1}\)
\(=\frac{4x+2}{\left(2x+1\right)\left(2x-1\right)}+\frac{4x^2+1}{\left(2x+1\right)\left(2x-1\right)}-\frac{2x-1}{\left(2x+1\right)\left(2x-1\right)}\)
\(=\frac{4x+2+4x^2+1-2x+1}{\left(2x+1\right)\left(2x-1\right)}=\frac{2x\left(2x+1\right)+4}{\left(2x+1\right)\left(2x-1\right)}=\frac{2x+4}{2x-1}\)
\(b,x=\frac{1}{2}\Rightarrow2x-1=0\left(loại\right)\)
..... 2 câu sau easy
ĐKXĐ : \(x,y\ne0\)\(;\)\(x\ne y\)
\(a)\) \(P=\frac{2}{x}-\left(\frac{x^2}{x^2-xy}+\frac{x^2-y^2}{xy}-\frac{y^2}{y^2-xy}\right):\frac{x^2-xy+y^2}{x-y}\)
\(P=\frac{2}{x}-\left(\frac{x^2y}{xy\left(x-y\right)}+\frac{\left(x-y\right)^2\left(x+y\right)}{xy\left(x-y\right)}+\frac{xy^2}{xy\left(x-y\right)}\right):\frac{x^2-xy+y^2}{x-y}\)
\(P=\frac{2}{x}-\left(\frac{xy\left(x+y\right)+\left(x-y\right)^2\left(x+y\right)}{xy\left(x-y\right)}\right):\frac{x^2-xy+y^2}{x-y}\)
\(P=\frac{2}{x}-\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{xy\left(x-y\right)}.\frac{x-y}{x^2-xy+y^2}\)
\(P=\frac{2y}{xy}-\frac{x+y}{xy}=\frac{y-x}{xy}\)
\(b)\)
+) Với \(\left|2x-1\right|=1\)\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-1=1\\2x-1=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=0\end{cases}}}\)
Mà \(x\ne0\) ( ĐKXĐ ) nên \(x=1\)
+) Với \(\left|y+1\right|=\frac{1}{2}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}y+1=\frac{1}{2}\\y+1=\frac{-1}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}y=\frac{-1}{2}\\y=\frac{-3}{2}\end{cases}}}\)
Thay \(x=1;y=\frac{-1}{2}\) vào \(A=\frac{y-x}{xy}\) ta được : \(A=\frac{\frac{-1}{2}-1}{1.\frac{-1}{2}}=\frac{\frac{-3}{2}}{\frac{-1}{2}}=3\)
Thay \(x=1;y=\frac{-3}{2}\) vào \(A=\frac{y-x}{xy}\) ta được : \(A=\frac{\frac{-3}{2}-1}{1.\frac{-3}{2}}=\frac{\frac{-5}{2}}{\frac{-3}{2}}=\frac{15}{4}\)
Vậy ...
Câu 1 :
\(A=\frac{4xy}{y^2-x^2}:\left(\frac{1}{y^2-x^2}+\frac{1}{y^2+2xy+x^2}\right)\)
a) ĐKXĐ : \(x\ne\pm y\)
b) Ta có : \(A=\frac{4xy}{\left(y-x\right)\left(x+y\right)}:\left(\frac{1}{\left(y-x\right)\left(x+y\right)}+\frac{1}{\left(x+y\right)^2}\right)\)
\(=\frac{4xy}{\left(y-x\right)\left(x+y\right)}:\left(\frac{x+y+y-x}{\left(x+y\right)^2\left(y-x\right)}\right)\)
\(=\frac{4xy}{\left(y-x\right)\left(x+y\right)}\cdot\frac{\left(x+y\right)^2\left(y-x\right)}{2y}\)
\(=2x\left(x+y\right)\)
Vậy : \(A=2x\left(x+y\right)\) với \(x\ne\pm y\)
b/ \(\Leftrightarrow A=\frac{4xy}{y^2-x^2}-\left(y^2-x^2\right)+\frac{4xy}{\left(y-x\right)\left(x+y\right)}.\left(x+y\right)^2\)
\(\Leftrightarrow A=4xy+\frac{4x^2y+4xy^2}{y-x}\)
\(\Leftrightarrow A=4xy.\left(1+\frac{x+y}{y-x}\right)\)
\(\Leftrightarrow A=\frac{8xy^2}{y-x}\)