Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+1\right)+\left(2a^2+2a\right)}=\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{\left(a+1\right)\left(a^2-a+1\right)+2a\left(a+1\right)}\)
\(=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
Gọi d là \(ƯCLN\left(a^2+a-1;a^2+a+1\right)\) nên :
\(\hept{\begin{cases}a^2+a-1⋮d\\a^2+a+1⋮d\end{cases}}\) \(\Leftrightarrow\left(a^2+a+1\right)-\left(a^2+a-1\right)=2⋮d\Rightarrow d=\left\{\pm1;\pm2\right\}\)
Mà \(a^2+a+1=a\left(a+1\right)+1\) do \(a\left(a+1\right)\) là tích 2 số nguyên liên tiếp
=> \(a\left(a+1\right)⋮2\Rightarrow a\left(a+1\right)+1\) ko chia hết cho 2 hay \(d\ne\pm2\)
\(\Rightarrow d=\pm1\) hay \(\frac{a^2+a-1}{a^2+a+1}\) tối giản (đpcm)
a. Ta có biến đổi:
\(A=\frac{a^3+2a^2-1}{a^3+2a^3+2a+1}\)
\(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)
\(A=\frac{a^2+a-1}{a^2+a+1}\)
b. Gọi d là ước chung lớn nhất của \(a^2+a-1\)và \(a^2+a+1\)
Vì \(a^2+a-1=a\left(a+1\right)-1\)là số lẻ nên d là số lẻ
Mặt khác, \(2=\left[a^2+a+1-\left(a^2+a-1\right)\right]⋮d\)
Nên d = 1 tức là \(a^2+a+1\)và \(a^2+a-1\)nguyên tố cùng nhau.
Vậy biểu thức A là phân số tối giản.
Đáp án đề số 1
Câu 1:
Ta có: =
Điều kiện đúng a ≠ -1 ( 0,25 điểm).
Rút gọn đúng cho 0,75 điểm.
b.Gọi d là ước chung lớn nhất của a2 + a – 1 và a2+a +1 (0,25đ).
Vì a2 + a – 1 = a(a+1) – 1 là số lẻ nên d là số lẻ
Mặt khác, 2 = [ a2+a +1 – (a2 + a – 1) ] d
Nên d = 1 tức là a2 + a + 1 và a2 + a – 1 nguyên tố cùng nhau. (0,5đ)
Vậy biểu thức A là phân số tối giản. ( 0,25 điểm)
Câu 2:
= 100a + 10 b + c = n2 - 1 (1)
= 100c + 10 b + c = n2 – 4n + 4 (2) (0,25đ)
Từ (1) và (2) 99(a – c) = 4 n – 5 4n – 5 99 (3) (0,25đ)
Mặt khác: 100 n2-1 999 101 n21000 11n31 394n – 5 119 (4) ( 0,25đ)
Từ (3) và (4) 4n – 5 = 99 n = 26
Vậy: = 675 ( 0,25đ)
Câu 3: (2 điểm)
a) Giả sử n2 + 2006 là số chính phương khi đó ta đặt n2 + 2006 = a2 ( aÎ Z) a2 – n2 = 2006 (a-n) (a+n) = 2006 (*) (0,25 điểm).
+ Thấy : Nếu a,n khác tính chất chẵn lẻ thì vế trái của (*) là số lẻ nên không thỏa mãn (*) ( 0,25 điểm).
+ Nếu a,n cùng tính chẵn hoặc lẻ thì (a-n)2 và (a+n) 2 nên vế trái chia hết cho 4 và vế phải không chia hết cho 4 nên không thỏa mãn (*) (0,25 điểm).
Vậy không tồn tại n để n2 + 2006 là số chính phương. (0,25 điểm).
b) n là số nguyên tố > 3 nên không chia hết cho 3. Vậy n2 chia hết cho 3 dư 1 do đó n2 + 2006 = 3m + 1 + 2006 = 3m+2007= 3( m+669) chia hết cho 3.
Vậy n2 + 2006 là hợp số. ( 1 điểm).
Bài 4: Mỗi câu đúng cho 1 điểm
Ta xét 3 trường hợp ; ; (0,5đ).
TH 1: a = b thì . (0,5đ).
TH 2: a > b a + n > b+ n.
Mà có phần thừa so với 1 là có phần thừa so với 1 là ,
vì nên (0,25đ).
TH3: a < b a + n < b + n.
Khi đó có phần bù tới 1 là , có phần bù tới 1 là ,
vì nên (0,25đ).
b) Cho A = ;
rõ ràng A < 1 nên theoa, nếu <1 thì > Þ A< (0,5đ).
Do đó A< = (0,5điểm).
Vây A<B.
Bài 5: Lập dãy số .
Đặt B1 = a1.
B2 = a1 + a2 .
B3 = a1 + a2 + a3
...................................
B10 = a1 + a2 + ... + a10 .
Nếu tồn tại Bi ( i= 1,2,3...10). nào đó chia hết cho 10 thì bài toán được chứng minh. ( 0,25 điểm).
Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau:
Ta đen Bi chia cho 10 sẽ được 10 số dư ( các số dư Î { 1,2.3...9}). Theo nguyên tắc Diriclê, phải có ít nhất 2 số dư bằng nhau. Các số Bm -Bn, chia hết cho 10 ( m>n) Þ ĐPCM.
Câu 6: Mỗi đường thẳng cắt 2005 đường thẳng còn lại tạo nên 2005 giao điểm. Mà có 2006 đường thẳng Þ có : 2005x 2006 giao điểm. Nhưng mỗi giao điểm được tính 2 lần Þ số giao điểm thực tế là:
(2005x 2006):2 = 1003x 2005 = 2011015 giao điểm.