K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2016

=935 nhe bé

AH
Akai Haruma
Giáo viên
30 tháng 3 2023

Lời giải:

$\frac{a+n}{b+n}-\frac{a}{b}=\frac{b(a+n)-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}$

Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=\frac{n(b-a)}{b(b+n)}>0$

$\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$

Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=\frac{n(b-a)}{b(b+n)}<0$

$\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$

Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=\frac{n(b-a)}{b(b+n)}=0$

$\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$

1 tháng 5 2015

Xét hiệu: \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{b\left(a+n\right)}{b\left(b+n\right)}-\frac{a.\left(b+n\right)}{b\left(b+n\right)}=\frac{ab+bn-ab-an}{b\left(b+n\right)}=\frac{\left(b-a\right).n}{b\left(b+n\right)}=\frac{n}{b\left(b+n\right)}.\left(b-a\right)\)

Nếu a\(\le\) b => b - a \(\ge\) 0 => hiệu \(\frac{a+n}{b+n}-\frac{a}{b}\ge0\Rightarrow\frac{a+n}{b+n}\ge\frac{a}{b}\)

Nếu a \(\ge\) b => b - a \(\le\) 0 => hiệu \(\frac{a+n}{b+n}-\frac{a}{b}\le0\Rightarrow\frac{a+n}{b+n}\le\frac{a}{b}\)

Vậy.......

1 tháng 5 2015

 

Admin kìa                                                                       

13 tháng 10 2016

VỚI A>B SUY RA A/B >1 => (A+N)B=AB+BN>AB+AN=A(B+N)=>A+N/B+N > A/B

VỚI A<B TƯƠNG TỰ SUY RA A+N/B+N < A/B 

VỚI A=B SUY RA A+N/B+N = A/B

13 tháng 10 2016

ta có: (a+n).b=ab+bn

(b+n).a=ab+an

TH1:nếu a>b

=>an>bn

=>ab+bn<ab+an

=>(a+n).b<(b+n).a

=>(a+n)/(b+n)<a/b

TH2 nếu a=b

=>an=bn

=>an+ab=ab+bn

=>a(b+n)=b(a+n)

=>(a+n)/(b+n)=a/b

TH3: nếu a<b

=>an+ab<an+bn

=>a(b+n)<b(a+n)

=>(a+n)/(b+n)>a/b

Vậy .........