Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
Bài 2 :
a) \(A=\sqrt{8+2\sqrt{7}}-\sqrt{7}=\sqrt{7+2\sqrt{7}+1}-\sqrt{7}\)
\(=\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{7}=\left|\sqrt{7}+1\right|-\sqrt{7}=\sqrt{7}+1-\sqrt{7}=1\)
b) \(B=\sqrt{7+4\sqrt{3}}-2\sqrt{3}=\sqrt{4+4\sqrt{3}+3}-2\sqrt{3}\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}-2\sqrt{3}=\left|2+\sqrt{3}\right|-2\sqrt{3}\)
\(=2+\sqrt{3}-2\sqrt{3}=2-\sqrt{3}\)
c) \(C=\sqrt{14-2\sqrt{13}}+\sqrt{14+2\sqrt{13}}\)
\(=\sqrt{13-2\sqrt{13}+1}+\sqrt{13+2\sqrt{13}+1}\)
\(=\sqrt{\left(\sqrt{13}-1\right)^2}+\sqrt{\left(\sqrt{13}+1\right)^2}\)
\(=\left|\sqrt{13}-1\right|+\left|\sqrt{13}+1\right|\)
\(=\sqrt{13}-1+\sqrt{13}+1=2\sqrt{13}\)
d) \(D=\sqrt{22-2\sqrt{21}}+\sqrt{22+2\sqrt{21}}\)
\(=\sqrt{21-2\sqrt{21}+1}+\sqrt{21+2\sqrt{21}+1}\)
\(=\sqrt{\left(\sqrt{21}-1\right)^2}+\sqrt{\left(\sqrt{21}+1\right)^2}\)
\(=\left|\sqrt{21}-1\right|+\left|\sqrt{21}+1\right|\)
\(=\sqrt{21}-1+\sqrt{21}+1=2\sqrt{21}\)
Lần sau bạn nhớ ghi đúng đề nhé!
\(\sqrt{25x+75}+3\sqrt{x-2}=2+4\sqrt{x+3}-\sqrt{9x-18}\)
Đk: \(x\ge2\)
pt <=> \(\sqrt{25\left(x+3\right)}+3\sqrt{x-2}=2+4\sqrt{x+3}-\sqrt{9\left(x-2\right)}\)
\(\Leftrightarrow5\sqrt{x+3}+3\sqrt{x-2}=2+4\sqrt{x+3}-3\sqrt{x-2}\)
\(\Leftrightarrow\sqrt{x+3}+6\sqrt{x-2}=2\)
\(\Leftrightarrow x+3+36\left(x-2\right)+12\sqrt{\left(x+3\right)\left(x-2\right)}=4\)
\(\Leftrightarrow12\sqrt{x^2+x-6}=73-37x\)
phương trình vô nghiệm vì \(x\ge2\Rightarrow73-37x< 0\)mà \(VT\ge0\)
a)\(\left(x^2-9\right)\left(x+2\right)=x+3\)
\(\Leftrightarrow\left(x+3\right)\left(x-3\right)\left(x+2\right)-\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(\left(x-3\right)\left(x+2\right)-1\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-x-6-1\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-x-7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\x^2-x-7=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-3\\x=\frac{1\pm\sqrt{29}}{2}\end{cases}}\)
b)\(x^4-6x^2+4x=0\)
\(\Leftrightarrow x\left(x^3-6x+4\right)=0\)
\(\Leftrightarrow x\left[x^3+2x^2-2x-2x^2-4x+4\right]=0\)
\(\Leftrightarrow x\left[x\left(x^2+2x-2\right)-2\left(x^2+2x-2\right)\right]=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x^2+2x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0;x=2\\x=\pm\sqrt{3}-1\end{cases}}\)
c)\(\sqrt{x^2-3x+3}+\sqrt{x^2-3x+6}=3\)
Đặt \(a=\sqrt{x^2-3x+3}>0\Rightarrow a^2+3=x^2-3x+6\)
\(pt\Leftrightarrow a+\sqrt{a^2+3}=3\)\(\Leftrightarrow\sqrt{a^2+3}=3-a\)
\(\Leftrightarrow a^2+3=a^2-6a+9\)
\(\Leftrightarrow6a-6=0\Leftrightarrow6\left(a-1\right)=0\Rightarrow a=1\) (thỏa)
\(\sqrt{x^2-3x+3}=1\)\(\Rightarrow x^2-3x+3=1\)
\(\Rightarrow x^2-3x+2=0\Rightarrow\left(x-2\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\) (thỏa)
đặt \(\sqrt{2-x}=a;\sqrt{2+x}=b\) \(\left(a+b\ge0\right)\)=> \(2-x=a^2;2+x=b^2\)=> \(a^2+b^2=4\)
=> Ta có hệ phương trình mới sau khi đặt 2 ẩn phụ là a; b
\(\hept{\begin{cases}a^2+b^2=4\\a+b+ab=2\end{cases}}\)<=> \(\hept{\begin{cases}\left(a+b\right)^2=4+2ab\\ab=2-a-b\end{cases}}\)Thay 2ab=4-2a-2b từ pt (2) lên pt (1) ta được:
=> \(\left(a+b\right)^2=4+4-2a-2b\)
<=> \(\left(a+b\right)^2+2\left(a+b\right)=8\)
<=> \(a+b=2\)hoặc \(a+b=-4\)
Do \(a+b\ge0\)=> \(a+b=2\)<=> \(ab=0\)
<=> \(a=0;b=2\)hoặc \(a=2;b=0\)
Trường hợp 1: a=0; b=2
Khi đó \(\sqrt{2-x}=0;\sqrt{2+x}=2\)<=> x=2
Trường hợp 2: a=2; b=0
Khi đó \(\sqrt{2-x}=2;\sqrt{2+x}=0\)và cũng ra x=2
Vậy pt có nghiệm duy nhất là x=2.
ĐK: \(-2\le x\le2\)
Đặt: \(\sqrt{2-x}+\sqrt{2+x}=t\ge0\)
=> \(t^2=4+2\sqrt{4-x^2}\)
=> \(\sqrt{4-x^2}=\frac{t^2-4}{2}\)
Ta có phương trình: \(t+\frac{t^2-4}{2}=2\)
<=? \(t^2+2t+1=9\)
<=> \(\left(t+1\right)^2=9\)
<=> \(\orbr{\begin{cases}t+1=3\\t+1=-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=2\\t=-4\left(loai\right)\end{cases}}\)
Với t = 2 ta thay vào:
\(t^2=4+2\sqrt{4-x^2}\)
khi đó có phương trinh:
\(4=4+2\sqrt{4-x^2}\)
<=> \(\sqrt{4-x^2}=0\Leftrightarrow x=\pm2\)( thỏa mãn đk)
Vậy:...