Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mỗi cách sắp xếp 6 bạn vào 6 chiếc ghế trống là hoán vị của 6 chiếc ghế. Do đó, số cách sắp xếp chỗ ngồi cho các thành viên trong nhóm là
\({P_6} = 6! = 720\) (cách)
a, Số cách sắp xếp 20 bạn để ngồi vào hàng đầu tiên là: \(A_{60}^{20}\) (cách)
b, Sau khi sắp xếp xong hàng đầu tiên, số cách sắp xếp 20 bạn để ngồi vào hàng thứ hai là: \(A_{40}^{20}\) (cách)
c, Sau khi sắp xếp xong hai hàng đầu, số cách sắp xếp 20 bạn để ngồi vào hàng thứ ba là: \({P_{20}} = 20!\) (cách)
Lời giải:
Giả sử ban đầu có $a$ dãy ghế thì mỗi dãy có $b$ người. Trong đó $a,b$ là số tự nhiên $\neq 0$. Ta có: $ab=150(1)$
Khi thêm 71 người thì có tổng $150+71=221$ người.
Số dãy ghế: $a+2$
Số người mỗi dãy: $b+3$
Ta có: $(a+2)(b+3)=221(2)$
Từ $(1); (2)\Rightarrow 3a+2b=65$
$\Rightarrow b=\frac{65-3a}{2}$. Thay vào $(1)$ thì:
$a.\frac{65-3a}{2}=150$
$\Leftrightarrow a(65-3a)=300$
$\Leftrightarrow 3a^2-65a+300=0$
$\Leftrightarrow a=15$ (chọn) hoặc $a=\frac{20}{3}$ (loại)
Vậy có $15$ dãy ghế.
a: SỐ cách xếp là;
5!*6!*2=172800(cách)
b: Số cách xếp là \(6!\cdot5!=86400\left(cách\right)\)
Để 2 học sinh nam ko ngồi đối diện và ngồi cạnh nhau nên ta có 2 lựa chọn
Lựa chọn 1 : 7 bạn nam ngồi lần lượt vào các vị trí ghế 1,3,5,7,9 vá các bạn nữ ngồi 2,4,6,8,10,12,14
Khi đó: ghế số 1 có 7 lựa chon
ghế số 2 có 6 lựa chọn
ghế số 3 có 5 lựa chon
ghế số 4 có 4 lựa chon
ghế số 5 có 3 lựa chon
ghế số 6 có 2 lựa chon
ghế số 7 có 1 lựa chon
=> có 7x6x5x4x3x2x1 = 5040 cách xếp các bạn nam
Tương tự cũng sẽ có 5040 cách xếp các bạn nữ
Lựa chọn 2: Các bạn nam ngồi vào các ghế số 2,4,6,8,10,12,14
=> Tương tự ta cũng có 5040 cách xếp các bạn nam
và 5040 cách xếp các bạn nữ
Vậy qua 2 lựa chọn ta có 5040x4= 20160 cách xếp
a) Ba cách sắp xếp bốn bạn trên theo thứ tự
- Hà, Mai, Nam, Đạt.
- Hà, Mai, Đạt, Nam
- Hà, Đạt, Mai, Nam
Chú ý: Có thể chọn các cách xếp khác, không nhất thiết phải giống trên.
b) Ta thực hiện các bước:
- Chọn bạn đứng đầu có 4 cách
- Chọn bạn đứng thứ hai có 3 cách
- Chọn bạn đứng thứ ba có 2 cách
- Chọn bạn đứng cuối có 1 cách
Vậy có 4.3.2 = 24 cách sắp xếp thứ tự bốn bạn trên để tham gia phỏng vấn.
+) Số cách chọn 7 bạn ngồi ở hàng đầu là: \(A_{22}^7\) (cách)
+) Số cách sắp xếp 15 bạn còn lại vào hàng sau là: \({P_{15}} = 15!\) (cách)
+) Áp dụng quy tắc nhân, số cách xếp vị trí chụp ảnh là: \(A_{22}^7.15!\) (cách)
a) Mỗi cách sắp xếp 5 bạn học sinh vào 5 chiếc ghế là một hoán vị của 5 bạn học sinh. Do đó, số cách sắp xếp 5 bạn học sinh ngồi vào 5 cái ghế là hoán vị là:
\({P_5} = 5!\) (cách)
b) Khi bạn Nga nhất định ngồi vào chiếc ghế ngoài cùng bên trái, thì số cách sắp xếp là số cách sắp xếp 4 bạn còn lại vào 4 chiếc ghế, mỗi cách như vậy là một hoán vị của 4 bạn học sinh. Do đó, số cách sắp xếp là:
\({P_4} = 4! = 24\) (cách)