K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2018

\(\sqrt{x+2\sqrt{x-1}}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}\right)^2+2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\)

\(\Leftrightarrow\left|\sqrt{x-1}+1\right|=2\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}+1=2\\\sqrt{x-1}+1=-2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}=1\Leftrightarrow x-1=1\Leftrightarrow x=2\\\sqrt{x-1}=-3\left(vl\right)\end{cases}}\)

Vậy phương trình có tập nghiệm  \(S=\left\{2\right\}\)

2 tháng 7 2017

B3: \(\sqrt{x^4-4x^3+2x^2+4x+1}=3x-1\)

\(pt\Leftrightarrow x^4-4x^3+2x^2+4x+1=\left(3x-1\right)^2\)

\(\Leftrightarrow x^4-4x^3+2x^2+4x+1=9x^2-6x+1\)

\(\Leftrightarrow x^4-4x^3-7x^2+10x=0\)

\(\Leftrightarrow x\left(x^3-4x^2-7x+10\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x-5\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=5\end{cases}}\) (thỏa mãn (mấy cái kia loại hết))

11 tháng 7 2020

ý a sai sai bạn ạ

a,\(\sqrt{23-8\sqrt{7}}-\sqrt{7}=\sqrt{16-8\sqrt{7}+7}-\sqrt{7}=\sqrt{\left(4-\sqrt{7}\right)^2}-\sqrt{7}=\left|4-\sqrt{7}\right|-\sqrt{7}=4-\sqrt{7}-\sqrt{7}=4\)

10 tháng 7 2017

1.\(5\sqrt{a}+6\sqrt{a.\frac{1}{4}}-\sqrt{a^2.\frac{4}{a}}+\sqrt{5}=5\sqrt{a}+6.\frac{1}{2}\sqrt{a}-2\sqrt{a}\)+\(\sqrt{5}\)

bạn tự làm nốt các câu này và làm tương tự các câu kia nhé!!Nếu khó chỗ nào hãy nhắn tin cho mk!! hihi

10 tháng 7 2017

Thanks

19 tháng 10 2020

1. đk: \(x\ge5\)

Ta có: \(PT\Leftrightarrow\sqrt{\left(x+1\right)\left(5x+9\right)}=\sqrt{\left(x+4\right)\left(x-5\right)}+5\sqrt{x+1}\)

\(\Leftrightarrow\left(x+1\right)\left(5x+9\right)=x^2+24x+5+10\sqrt{\left(x+1\right)\left(x+4\right)\left(x-5\right)}\)

\(\Leftrightarrow5x^2+14x+9-x^2-24x-5-10\sqrt{\left[\left(x+1\right)\left(x-5\right)\right]\left(x+4\right)}=0\)

\(\Leftrightarrow4x^2-10x+4-10\sqrt{\left(x^2-4x-5\right)\left(x+4\right)}=0\)

\(\Leftrightarrow\left(2x^2-8x-10\right)+\left(3x+12\right)-5\sqrt{\left(x^2-4x-5\right)\left(x+4\right)}=0\)

\(\Leftrightarrow2\left(x^2-4x-5\right)+3\left(x+4\right)-5\sqrt{\left(x^2-4x-5\right)\left(x+4\right)}=0\)

Đặt \(\hept{\begin{cases}\sqrt{x^2-4x-5}=a\\\sqrt{x+4}=b\end{cases}}\) khi đó:

\(PT\Leftrightarrow2a^2+3b^2-5ab=0\)

\(\Leftrightarrow\left(2a^2-2ab\right)-\left(3ab-3b^2\right)=0\)

\(\Leftrightarrow2a\left(a-b\right)-3b\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(2a-3b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\2a-3b=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=b\\2a=3b\end{cases}}\)

Nếu: \(a=b\Leftrightarrow\sqrt{x^2-4x-5}=\sqrt{x+4}\)

\(\Leftrightarrow x^2-4x-5=x+4\)

\(\Leftrightarrow x^2-5x-9=0\)

\(\Leftrightarrow\left(x-\frac{5+\sqrt{61}}{2}\right)\left(x-\frac{5-\sqrt{61}}{2}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-\frac{5+\sqrt{61}}{2}=0\\x-\frac{5-\sqrt{61}}{2}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5+\sqrt{61}}{2}\left(tm\right)\\x=\frac{5-\sqrt{61}}{2}\left(ktm\right)\end{cases}}\)

Nếu: \(2a=3b\Leftrightarrow2\sqrt{x^2-4x-5}=3\sqrt{x+4}\)

\(\Leftrightarrow4\left(x^2-4x-5\right)=9\left(x+4\right)\)

\(\Leftrightarrow4x^2-25x-56=0\)

\(\Leftrightarrow\left(x-8\right)\left(4x+7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=8\left(tm\right)\\x=-\frac{7}{4}\left(ktm\right)\end{cases}}\)

Vậy \(x\in\left\{\frac{5+\sqrt{61}}{2};8\right\}\)

19 tháng 10 2020

2. đk: \(x\ge\frac{1}{2}\)

Ta có: \(x^2-2x=2\sqrt{2x-1}\)

\(\Leftrightarrow\left(x-1\right)^2-1=2\sqrt{2x-1}\)

Đặt APKHT như sau: \(a-1=\sqrt{2x-1}\)

Khi đó ta có hệ sau: \(\hept{\begin{cases}x^2-2x=2\left(y-1\right)\\y^2-2y=2\left(x-1\right)\end{cases}}\)

Trừ vế trên cho vế dưới của HPT ta được:

\(x^2-2x-y^2+2y=2\left(y-1\right)-2\left(x-1\right)\)

\(\Leftrightarrow x^2-y^2-2x+2y-2y+2x=0\)

\(\Leftrightarrow x^2-y^2=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=0\)

Nếu \(x-y=0\Leftrightarrow x-1=y-1\Leftrightarrow x-1=\sqrt{2x-1}\)

\(\Leftrightarrow x^2-2x+1=2x-1\)

\(\Leftrightarrow x^2-4x+2=0\)

\(\Leftrightarrow\left(x-2-\sqrt{2}\right)\left(x-2+\sqrt{2}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2+\sqrt{2}\left(tm\right)\\x=2-\sqrt{2}\left(ktm\right)\end{cases}}\)

Nếu \(x+y=0\) mà \(x,y>0\) => vô lý

Vậy \(x=2+\sqrt{2}\)

21 tháng 7 2017

1.

ĐK \(a\ge0;a\ne1\)

Ta có \(A=\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right).\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)\)

\(=\frac{\left(\sqrt{a}+1\right)^2-\left(\sqrt{a}-1\right)^2+4\sqrt{a}\left(a-1\right)}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}.\frac{a-1}{\sqrt{a}}\)

\(=\frac{a+2\sqrt{a}+1-a+2\sqrt{a}-1+4a\sqrt{a}-4\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}}\)

\(=\frac{4a\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}}=4a\)

2. Với \(a=\frac{\sqrt{6}}{2+\sqrt{6}}\Rightarrow A=\frac{4\sqrt{6}}{2+\sqrt{6}}\)

Để \(\sqrt{A}>A\Rightarrow\sqrt{4a}>4a\Rightarrow2\sqrt{a}-4a>0\Rightarrow2\sqrt{a}\left(1-2\sqrt{a}\right)>0\)

\(\Rightarrow\hept{\begin{cases}\sqrt{a}>0\\1-2\sqrt{a}>0\end{cases}\Rightarrow\hept{\begin{cases}a>0\\a>\frac{1}{4}\end{cases}\Rightarrow}a>\frac{1}{4}}\)

Vậy để \(\sqrt{A}>A\)thì \(a>\frac{1}{4};a\ne1\)