K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2020

\(\sqrt{x^2+5x+20}=4\)

ĐK : x ∈ R

Bình phương hai vế

<=> \(x^2+5x+20=16\)

<=> \(x^2+5x+20-16=0\)

<=> \(x^2+5x+4=0\)(1)

Ta có : a - b + c = 1 - 5 + 4 = 0

=> (1) có hai nghiệm \(\hept{\begin{cases}x_1=-1\\x_2=-\frac{c}{a}=-\frac{4}{1}=-4\end{cases}}\)

18 tháng 10 2020

\(\sqrt{x^2+5x+20}=4\)

\(\Rightarrow\left(\sqrt{x^2+5x+20}\right)^2=16\)

\(\Leftrightarrow x^2+5x+20=16\)

\(\Leftrightarrow x^2+5x+4=0\)

\(\Leftrightarrow\left(x^2+x\right)+\left(4x+4\right)=0\)

\(\Leftrightarrow x\left(x+1\right)+4\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-1;-4\right\}\)

1 tháng 8 2018

1/

Ta có:  \(\left(1+\sqrt{15}\right)^2\)= 1 + 15 + \(2\sqrt{15}\)= 16 + \(2\sqrt{15}\)

              \(\sqrt{24}^2\)= 24 = 16 + 8

Vì:     \(\sqrt{15}^2\)= 15 < 16 =\(4^2\)

Nên:   \(\sqrt{15}< 4\)

=>       \(2\sqrt{15}< 8\)

=>       \(16+2\sqrt{15}< 24\)

=>      \(\left(1+\sqrt{15}\right)^2< \sqrt{24}^2\)

Vậy     \(1+\sqrt{15}< \sqrt{24}\)

2/

b/    \(3x-7\sqrt{x}=20\)\(\left(x\ge0\right)\)

<=> \(3x-7\sqrt{x}-20=0\)

<=> \(3x-12\sqrt{x}+5\sqrt{x}-20=0\)

<=> \(3\sqrt{x}\left(\sqrt{x}-4\right)+5\left(\sqrt{x}-4\right)=0\)

<=> \(\left(\sqrt{x}-4\right)\left(3\sqrt{x}+5\right)=0\)

<=> \(\sqrt{x}-4=0\)hoặc \(3\sqrt{x}+5=0\)

<=>   \(\sqrt{x}=4\)hoặc \(3\sqrt{x}=-5\)(vô nghiệm)

<=>   \(x=16\)

Vậy S=\(\left\{16\right\}\)

c/    \(1+\sqrt{3x}>3\)

<=> \(\sqrt{3x}>2\)

<=>   \(3x>4\)

<=>  \(x>\frac{4}{3}\)

d/      \(x^2-x\sqrt{x}-5x-\sqrt{x}-6=0\)(\(x\ge0\))

<=>   \(\left(x^2-5x-6\right)-\left(x\sqrt{x}+\sqrt{x}\right)=0\)

<=>   \(\left(x^2-6x+x-6\right)-\left(x\sqrt{x}+\sqrt{x}\right)=0\)

<=>    \([x\left(x-6\right)+\left(x-6\right)]-\sqrt{x}\left(x+1\right)=0\)

<=>   \(\left(x-6\right)\left(x+1\right)-\sqrt{x}\left(x+1\right)=0\)

<=>   \(\left(x+1\right)\left(x-6-\sqrt{x}\right)=0\)

<=>    \(\left(x+1\right)\left(x-3\sqrt{x}+2\sqrt{x}-6\right)=0\) 

<=>    \(\left(x+1\right)[\sqrt{x}\left(\sqrt{x}-3\right)+2\left(\sqrt{x}-3\right)]=0\)

<=>    \(\left(x+1\right)\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)=0\)

<=>     \(x+1=0\)  hoặc \(\sqrt{x}-3=0\)hoặc \(\sqrt{x}+2=0\)

<=>     \(x=-1\)(loại)  hoặc \(x=9\)hoặc \(\sqrt{x}=-2\)(vô nghiệm)

Vậy S={  9 }

Phép 1:

Ta có: \(3\cdot\sqrt{7-4\sqrt{3}}\)

\(=3\cdot\sqrt{4-2\cdot2\cdot\sqrt{3}+3}\)

\(=3\cdot\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=3\cdot\left|2-\sqrt{3}\right|\)

\(=3\cdot\left(2-\sqrt{3}\right)\)(Vì \(2>\sqrt{3}\))

\(=6-3\sqrt{3}\)

Phép 2:

Ta có: \(\sqrt{11+4\sqrt{7}}\)

\(=\sqrt{7+2\cdot\sqrt{7}\cdot2+4}\)

\(=\sqrt{\left(\sqrt{7}+2\right)^2}\)

\(=\left|\sqrt{7}+2\right|\)

\(=\sqrt{7}+2\)(Vì \(\sqrt{7}+2>0\))

Phép 3:

Ta có: \(2\cdot\sqrt{11-4\sqrt{7}}\)

\(=2\cdot\sqrt{7-2\cdot\sqrt{7}\cdot2+4}\)

\(=2\cdot\sqrt{\left(\sqrt{7}-2\right)^2}\)

\(=2\cdot\left|\sqrt{7}-2\right|\)

\(=2\cdot\left(\sqrt{7}-2\right)\)(Vì \(\sqrt{7}>2\))

\(=2\sqrt{7}-4\)

Phép 4:

Ta có: \(\sqrt{19-4\sqrt{15}}\)

\(=\sqrt{15-2\cdot\sqrt{15}\cdot2+4}\)

\(=\sqrt{\left(\sqrt{15}-2\right)^2}\)

\(=\left|\sqrt{15}-2\right|\)

\(=\sqrt{15}-2\)(Vì \(\sqrt{15}>2\))