Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Sửa đề: 1/3^200
1/2^300=(1/8)^100
1/3^200=(1/9)^100
mà 1/8>1/9
nên 1/2^300>1/3^200
b: 1/5^199>1/5^200=1/25^100
1/3^300=1/27^100
mà 25^100<27^100
nên 1/5^199>1/3^300
Ta sẽ so sánh \(5^{199}\) và \(3^{300}\)
Mà:\(5^{199}< 5^{200}=25^{100}< 27^{100}=3^{300}\)
\(\Rightarrow5^{199}< 3^{300}\Rightarrow\frac{1}{5^{199}}>\frac{1}{3^{300}}\)
Ta có 10750=1072x25=(1072)25=1144925
7375=733x25=(733)25=38901725
vì 11449<389017 nên 1144925<38901725
Do đó 10750<737
Nhấn đúng cho mình nha, cam ơn
\(107^{50}72^{75}=\left(2^3\right)^{75}.\left(3^2\right)^{75}=2^{225}.3^{150}\)
=> \(2^{100}.3^{150}
Ta có :
\(5^{199}< 5^{200}=5^{2\cdot100}=25^{100}\)
\(3^{300}=3^{3\cdot100}=27^{100}\)
Mà \(25^{100}< 27^{100}\Rightarrow5^{199}< 3^{300}\)
Vậy \(\dfrac{1}{3^{300}}>\dfrac{1}{5^{199}}\)
3³⁰⁰ = (3³)¹⁰⁰ = 27¹⁰⁰
5²⁰⁰ = (5²)¹⁰⁰ = 25¹⁰⁰
Do 27 > 5 nên 27¹⁰⁰ > 25¹⁰⁰
⇒ 3³⁰⁰ > 5²⁰⁰ (1)
Do 200 > 199 nên 5²⁰⁰ > 5¹⁹⁹ (2)
Từ (1) và (2) ⇒ 3³⁰⁰ > 5¹⁹⁹
⇒ 1/3³⁰⁰ < 1/5¹⁹⁹
1) \(5^{199}< 5^{200}=25^{100}\)
\(3^{300}=27^{100}>25^{100}\)
\(\Rightarrow3^{300}>5^{199}\)
\(\Rightarrow\dfrac{1}{3^{300}}< \dfrac{1}{5^{199}}\)
2) a) \(107^{50}=\left(107^2\right)^{25}=11449^{25}\)
\(73^{75}=\left(73^3\right)^{25}=389017^{25}>11449^{25}\)
\(\Rightarrow107^{50}< 73^{75}\)
b) \(54^4< 5^{12}< 21^{12}\Rightarrow54^4< 21^{12}\)
Giúp mình với