Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Đk \(x\ge0,x\ne1\)
\(\Rightarrow P=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}-1\right)-6\sqrt{x}+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
b)\(x=7-4\sqrt{3}=\left(2-\sqrt{3}\right)^2\Rightarrow\sqrt{x}=2-\sqrt{3}\)
\(\Rightarrow P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{2-\sqrt{3}-1}{2-\sqrt{3}+1}=\dfrac{1-\sqrt{3}}{3-\sqrt{3}}=\dfrac{-\sqrt{3}}{3}\)
1)
\(\left[\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-1}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{x-1}\right]:\dfrac{2\sqrt{3x}}{x-1}\)
\(=\left(\dfrac{x+\sqrt{x}+x-\sqrt{x}}{x-1}\right).\dfrac{x-1}{2\sqrt{3x}}\)
\(=\dfrac{2x}{x-1}.\dfrac{x-1}{2\sqrt{3x}}=\dfrac{\sqrt{x}}{\sqrt{3}}=\dfrac{\sqrt{3x}}{3}\)
Có A = x - căn x = x - căn x + 1/4 -1/4 = ( căn x - 1/2)2- 1/4 >= -1/4
Dấu "=" xáy ra <-> x = 1/4
Vậy min của A là -1/4 <-> x= 1/4
\(3+\sqrt{2x-3}=x\) (ĐKXĐ: x \(\ge\)1,5)
\(\Leftrightarrow\sqrt{2x-3}=x-3\)
\(\Leftrightarrow2x-3=x^2-6x+9\)
\(\Leftrightarrow-x^2+8x-12=0\)
\(\Leftrightarrow-\left(x^2-8x+12\right)=0\)
\(\Leftrightarrow x^2-6x-2x+12=0\)
\(\Leftrightarrow x.\left(x-6\right)-2.\left(x-6\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x-2\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=6\\x=2\end{cases}\left(\text{TMĐK}\right)}\)
Vậy ...
Ta có: \(6\sqrt{2}+\sqrt{6-\sqrt{11}}-\sqrt{6+\sqrt{11}}\)
\(=\dfrac{12+\sqrt{12-2\sqrt{11}}-\sqrt{12+2\sqrt{11}}}{\sqrt{2}}\)
\(=\dfrac{12+\sqrt{11}-1-\sqrt{11}-1}{\sqrt{2}}\)
\(=5\sqrt{2}\)
\(\sqrt{x^2-10x+25}-3=0\)\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=3\)\(\Leftrightarrow\left|x-5\right|=3\)(*)
Trường hợp \(x\ge5\)thì (*) \(\Leftrightarrow x-5=3\Leftrightarrow x=8\left(nhận\right)\)
Trường hợp \(x< 5\)thì (*) \(\Leftrightarrow5-x=3\Leftrightarrow x=2\left(nhận\right)\)
Vậy phương trình đã cho có tập nghiệm \(S=\left\{2;8\right\}\)