Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(2x+3\right)^2-4\left(x-1\right)\left(x+1\right)=49\)
\(\Leftrightarrow4x^2+12x+9-4x^2+4=49\)
\(\Leftrightarrow12x=36\)
\(\Rightarrow x=3\)
b) \(16x^2-\left(4x-5\right)^2=15\)
\(\Rightarrow16x^2-16x^2+40x-25=15\)
\(\Rightarrow x=1\)
d) \(\left(2x+5\right)\left(8x-7\right)-\left(-4x-3\right)^2=16\)
\(\Leftrightarrow16x^2-14x+40x-35-16x^2+24x-9=16\)
\(\Leftrightarrow50x=60\)
\(\Rightarrow x=\dfrac{6}{5}\)
e) \(49x^2+12x+1=0\)
\(\Leftrightarrow7x+1=0\)
\(\Rightarrow x=\dfrac{-1}{7}\)
f) \(x^2+y^2-2x+4y+5=0\)
\(\Leftrightarrow x^2-2x+1+y^2+4x+5=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Câu 1 : Làm tính nhân :
a) \(2x\left(x^2-7x-3\right)\)
\(=2x^3-14x-6x\)
b) \(\left(-2x^3+3y^2-7xy\right).4xy^2\)
\(=-8x^4y^2+3x-28x^2y^3\)
c) \(\left(25x^2+10xy+4y^2\right).\left(5x-2y\right)\)
\(=-50x^2y-20xy^2-8y^3+125x^3+50x^2y+20xy^2\)
\(=-8y^3+125x^3\)
d) \(\left(5x^3-x^2+2x-3\right)\left(4x^2-x+2\right)\)
\(=10x^3-2x^2+4x-6-5x^4+x^3-2x^2+3x+20x^5-4x^4+8x^3-12x^2\)
\(=20x^5-9x^4+19x^3-16x^2-7x-6\)
Câu 3: phân tích
a)\(4x-8y\)
\(=4\left(x-2y\right)\)
b)\(x^2+2xy+y^2-16\)
\(=\left(x+y\right)^2-4^2\)
\(=\left(x+y-4\right)\left(x+y+4\right)\)
c)\(3x^2+5x-3xy-5y\)
\(=3x^2-3xy+5x-5y\)
\(=3x\left(x-y\right)+5\left(x-y\right)\)
\(=\left(x-y\right)\left(3x+5\right)\)
\(a,\left|x+3,4\right|+\left|x+2,4\right|+\left|x+7,2\right|=4x\)
\(\left|x+3,4\right|\ge0;\left|x+2,4\right|\ge0;\left|x+7,2\right|\ge0\)
\(< =>\left|x+3,4\right|+\left|x+2,4\right|+\left|x+7,2\right|>0\)
\(< =>4x>0\)
\(x>0\)
\(\hept{\begin{cases}\left|x+3,4\right|=x+3,4\\\left|x+2,4\right|=x+2,4\\\left|x+7,2\right|=x+7,2\end{cases}}\)
\(x+3,4+x+2,4+x+7,2=4x\)
\(x=13\left(TM\right)\)
\(b,3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(3^n.27+3^n.3+2^n.8+2^n.4\)
\(3^n.30+2^n.12\)
\(\hept{\begin{cases}3^n.30⋮6\\2^n.12⋮6\end{cases}}\)
\(< =>3^n.30+2^n.12⋮6< =>VP⋮6\)
86.NHỮNG PHÉP TÍNH THÚ VỊ
24+36=1
11+13=1
158+207=1
46+54=1
thì khi đó người làm câu hỏi bị sai/ mình nghĩ thế
a, \(A=x\left(2x^2-3-5x^2-x+x\right)=x\left(-3x-3\right)\)\(=-3x\left(x+1\right)\)
b, \(B=3x^2-6x-5x+5x^2-8x^2+24\)\(=-9x+24\)
C, \(C=x\left(2x^4-x^2-4x^4-2x^2+x-2x+6x^2\right)\)\(=x\left(-2x^4+3x^2-x\right)=-2x^5+3x^3-x^2\)
Chúc học tốt !
Lm ko chép lại đề
Answer:
Bài 1:
\(x^2-xy+2x-2y\)
\(=x\left(x-y\right)+2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+2\right)\)
\(x^2-4y^2\)
\(=\left(x\right)^2-\left(2y\right)^2\)
\(=\left(x-2y\right)\left(x+2y\right)\)
Bài 2:
\(5\left(x-3\right)+x^2-3x=0\)
\(\Rightarrow5\left(x-3\right)+x\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(5+x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}}\)
\(x^2-x-12=0\)
\(\Rightarrow x^2+3x-4x-12=0\)
\(\Rightarrow x\left(x+3\right)-4\left(x+3\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-3\\x=4\end{cases}}}\)
Bài 3:
a, Với \(x=-3\)
\(A=\frac{x-4}{x+5}=\frac{-3-4}{-3+5}=-\frac{7}{2}\)
b, \(B=\frac{2}{x+4}+\frac{x+20}{x^2-16}\left(ĐK:x\ne\pm4;x\ne-5\right)\)
\(=\frac{2}{x+4}+\frac{x+20}{\left(x-4\right)\left(x+4\right)}\)
\(=\frac{2\left(x-4\right)+x+20}{\left(x-4\right)\left(x+4\right)}\)
\(=\frac{2x-8+x+20}{\left(x-4\right)\left(x+4\right)}\)
\(=\frac{3x+12}{\left(x-4\right)\left(x+4\right)}\)
\(=\frac{3\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}\)
\(=\frac{3}{x-4}\)
c, \(M=A.B=\frac{x-4}{x+5}.\frac{3}{x-4}=\frac{3}{x+5}\)
Để M nguyên thì \(3⋮\left(x+5\right)\)
\(\Rightarrow x+5\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow x\in\left\{-4;-6;-2;-8\right\}\) mà \(ĐK:x\ne\pm4\)
Vậy \(x\in\left\{-6;-2;-8\right\}\)