Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H E F
a) ta có: \(BC^2=\left(BH+CH\right)^2=BH^2+CH^2+2BH.CH\)
=\(BE^2+EH^2+FH^2+CF^2+2AH^2\)
\(=BE^2+CF^2+3AH^2\)(đpcm)
b) đơn giản đi, ta cần chứng minh \(\sqrt[3]{\frac{BE^2}{BC^2}}+\sqrt[3]{\frac{CF^2}{BC^2}}=1\)
Ta có: \(BE=\frac{BH^2}{AB};BC=\frac{AB^2}{BH}\Rightarrow\frac{BE}{BC}=\frac{BH^3}{AB^3}\)
Thiết lập tương tự \(\Rightarrow VT=\frac{BH^2}{AB^2}+\frac{CH^2}{AC^2}\)
Việc còn lại cm nó =1,xin nhường chủ tus
a, bc^2 = ab^2 +ac^2
<=.> (ae+eb)^2 +(af+fc)^2
<=.>AE^2 +2 AE.EB +EB^2 +AF^2+FC^2+2AF,FC
<=> EF^2 +EB^2 +CF^2 +2.(EH^2+FH^2)
<=>EB^2 +CF^2 + AH ^2 + 2 AH^2 vì tứ giác EHAF là hcn suy ra AH =EF
<=>EB^2 +CF^2+3 AH^2 (đpcm)
b, cb =2a là thế nào vậy
a) Áp dụng HTL => \(AE.AB=AH^2\)và \(AF.AC=AH^2\)
<=> Ta lần lượt có \(AE.m=AH^2\)và \(AF.n=AH^2\)
Tiếp tục áp dụng HTL => \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)=> \(\frac{1}{AH^2}=\frac{1}{m^2}+\frac{1}{n^2}=\frac{\left(m^2+n^2\right)}{m^2n^2}\)
<=> \(AH^2=\frac{\left(m^2n^2\right)}{m^2+n^2}\)
=> AE.m=\(\frac{m^2n^2}{m^2+n^2}\)và AF.n=\(\frac{m^2n^2}{m^2+n^2}\)
=> AE; AF=......
b) Lần lượt áp dụng các HTL, ta có:
\(BE.AE=HE^2\); \(AF.CF=HF^2\)
<=> \(BE.CF.AE.AF=\left(HE.HF\right)^2\)
Do tứ giác AEHF có 3 góc vuông => AEHF là HCN => HE=AF; HF=AE; AH=EF
<=> \(BE.CF.BC=AE.AF.BC\) \(=\frac{AE.AF.BC.AH}{AH}\)\(=\frac{AE.AB.AF.AC}{AH}\)(HTL)\(=\frac{AH^2.AH^2}{AH}=AH^3=EF^3\)(Lại Áp dụng HTL)
=> \(BC.CF.BC=EF^3\left(đpcm\right)\)
A B C H D E
a) Xét tam giác ABC vuông tại A có AH là đường cao => AB2 = BH.BC; AC2 = HC.BC (Hệ thức lượng trong tam giác vuông)
Do đó: \(\frac{AB^2}{AC^2}=\frac{HB.BC}{HC.BC}=\frac{HB}{HC}\)
b) Từ \(\frac{AB^2}{AC^2}=\frac{HB}{HC}\)=> \(\frac{AB^4}{AC^4}=\frac{HB^2}{HC^2}\)
Xét tam giác AHB vuông tại H có HD là đường cao => BH2 = BD.AB ( Hệ thức lượng)
Xét tam giác AHC vuông tại H có HE là đường cao => HC2 = EC.AC
Do đó: \(\frac{AB^4}{AC^4}=\frac{BD.AB}{EC.AC}\)=> \(\frac{AB^3}{AC^3}=\frac{BD}{EC}\)