K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2017

A B C H E F

a) ta có: \(BC^2=\left(BH+CH\right)^2=BH^2+CH^2+2BH.CH\)

=\(BE^2+EH^2+FH^2+CF^2+2AH^2\)

\(=BE^2+CF^2+3AH^2\)(đpcm)

b) đơn giản đi, ta cần chứng minh \(\sqrt[3]{\frac{BE^2}{BC^2}}+\sqrt[3]{\frac{CF^2}{BC^2}}=1\)

Ta có: \(BE=\frac{BH^2}{AB};BC=\frac{AB^2}{BH}\Rightarrow\frac{BE}{BC}=\frac{BH^3}{AB^3}\)

Thiết lập tương tự \(\Rightarrow VT=\frac{BH^2}{AB^2}+\frac{CH^2}{AC^2}\)

Việc còn lại cm nó =1,xin nhường chủ tus

e: BE*BC^2

=BH^2/BA*BC^2

=(BH*BC)^2/BA

=BA^4/BA=BA^3

16 tháng 7 2021

a) đề phải là \(\dfrac{EB}{FC}=\dfrac{AB^3}{AC^3}\)

Ta có: \(\dfrac{EB}{FC}.\dfrac{AB}{AC}=\dfrac{BE.BA}{AC.CF}=\dfrac{BH^2}{CH^2}=\left(\dfrac{BH}{CH}\right)^2=\left(\dfrac{BH.BC}{CH.BC}\right)^2\)

\(=\left(\dfrac{AB^2}{AC^2}\right)^2=\dfrac{AB^4}{AC^4}\Rightarrow\dfrac{EB}{FC}=\dfrac{AB^3}{AC^3}\)

b) Vì \(\angle HEA=\angle HFA=\angle EAF=90\Rightarrow AEHF\) là hình chữ nhật

\(\Rightarrow AH^2=EF^2=EH^2+HF^2\)

Ta có: \(3AH^2+BE^2+CF^2=\left(BE^2+EH^2\right)+\left(CF^2+FH^2\right)+2AH^2\)

\(=BH^2+CH^2+2.BH.CH=\left(BH+CH\right)^2=BC^2\)

 

23 tháng 6 2017

a, bc^2 = ab^2 +ac^2 

      <=.> (ae+eb)^2   +(af+fc)^2

     <=.>AE^2 +2 AE.EB +EB^2 +AF^2+FC^2+2AF,FC 

<=> EF^2 +EB^2 +CF^2 +2.(EH^2+FH^2)

<=>EB^2 +CF^2 + AH ^2  + 2 AH^2 vì tứ giác EHAF là hcn suy ra AH =EF 

<=>EB^2 +CF^2+3 AH^2  (đpcm)

b, cb =2a là thế nào vậy

25 tháng 6 2017

đề bài cho vậy 

30 tháng 7 2017

Hình thì e tự vẽ nha

a)  Dễ dàng c/m đc AEHF là hcn => AH = EF

Áp dụng hệ thức lượng ta có

\(BC^2=\left(BH+CH\right)^2=BH^2+CH^2+2AH.BH\)

\(=BE^2+HE^2+CF^2+HF^2+2AH^2=BE^2+CF^2+2AH^2+\left(HE^2+HF^2\right)\)

\(=BE^2+CF^2+2AH^2+EF^2=BE^2+CF^2+2AH^2+AH^2\)

\(=BE^2+CF^2+3AH^2\)

b)  \(\Delta ABH\)  có  \(BE=\frac{BH^2}{AB}\)  \(\Rightarrow BE^2=\frac{BH^4}{AB^2}\)

Tương tự  \(CF^2=\frac{CH^4}{AC^2}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel và BĐT  \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)

Do đó  \(BE^2+CF^2=\frac{BH^4}{AB^2}+\frac{CH^4}{AC^2}\ge\frac{\left(BH^2+CH^2\right)^2}{AB^2+AC^2}\ge\frac{\left[\frac{\left(BH+CH\right)^2}{2}\right]^2}{BC^2}=\frac{\left[\frac{BC^2}{2}\right]^2}{BC^2}\)

\(=\frac{\frac{BC^4}{4}}{BC^2}=\frac{BC^2}{4}=\frac{\left(2a\right)^2}{4}=a^2\)

Đẳng thức xảy ra  \(\Leftrightarrow BH=CH\)  hay H là trung điểm BC.

Như vậy AH vừa là đường cao, vừa là đường trung tuyến

=> Tam giác ABC vuông cân tại A.

p/s: làm lụi thôi nha, ko bt đúng ko nữa. Đúng thì cho mk 1 k nha

30 tháng 7 2017

cảm ơn nha làm lụi nhưng chắc đúng đó

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{AB^2}{AC^2}=\dfrac{BH\cdot BC}{CH\cdot BC}=\dfrac{HB}{HC}\)(đpcm)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:

\(BD\cdot BA=BH^2\)

\(\Leftrightarrow BD=\dfrac{HB^2}{AB}\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:

\(CE\cdot CA=CH^2\)

\(\Leftrightarrow EC=\dfrac{HC^2}{AC}\)

Ta có: \(\dfrac{BD}{EC}=\dfrac{HB^2}{AB}:\dfrac{HC^2}{AC}\)

\(\Leftrightarrow\dfrac{BD}{EC}=\dfrac{HB^2}{AB}\cdot\dfrac{AC}{HC^2}\)

\(\Leftrightarrow\dfrac{BD}{EC}=\left(\dfrac{HB}{HC}\right)^2\cdot\dfrac{AC}{AB}\)

\(\Leftrightarrow\dfrac{BD}{EC}=\left(\dfrac{AB}{AC}\right)^4\cdot\dfrac{AC}{AB}=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)(đpcm)

20 tháng 9 2015

Ông Thắng chỉ cần ấn nhầm vài cái xóa là được mà@@