Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không phải là căn bậc hai số học là đứng độc lập 1 mình đâu bạn
Những trường hợp em nêu đều là CBHSH
$2\sqrt{3}$ là căn bậc 2 số học của $12$
$\sqrt{3}.\sqrt{4}$ là căn bậc 2 số học của $12$
$\sqrt{\frac{3}{4}}$ là căn bậc 2 số học $\frac{3}{4}$
Em cứ nhớ $\sqrt{x}$ (với $x$ là số không âm) là CBHSH của $x$, dù nó biểu diễn kiểu gì đi chăng nữa.
Bạn chỉ cần hiểu là căn bậc hai số học của là một số x sao cho \(x^2=a\) và \(x\ge0\) thôi
\(\sqrt{f\left(x\right)}=\sqrt{g\left(x\right)}\left(ĐK:\left[{}\begin{matrix}f\left(x\right)\ge0\\g\left(x\right)\ge0\end{matrix}\right.\right)\\ \Leftrightarrow f\left(x\right)=g\left(x\right)\)
Trong ví dụ \(\sqrt{16x}=\sqrt{81}\), trước khi bình phương 2 vế để phá dấu căn thì bạn cần ghi điều kiện \(16x\ge0\Leftrightarrow x\ge0\) nhé.
Tại sao không giải ra $\sqrt{P}$ và $\sqrt{P}$?
Em đã có $P$ rồi, nhưng với $\sqrt{P}$, em làm sao rút gọn được khi mà $P$ đã khá gọn rồi. Cũng chẳng có giá trị nào của $x$ để tính cụ thể $P, \sqrt{P}$ rồi đi so sánh. Vì vậy cách này không khả thi.
Vậy thì phải tìm hướng khác. Muốn so sánh 2 số, ta xét hiệu hai số đó.
$P-\sqrt{P}=\sqrt{P}(\sqrt{P}-1)$
Rõ ràng $\sqrt{P}$ đã dương rồi, giờ ta phải xem xét xem $\sqrt{P}-1$ âm hay dương, hay $P$ có lớn hơn 1 không
Đó là lý do vì sao bài giải như trên.
Còn câu hỏi khi nào giải ra từng cái $P$ và $\sqrt{P}$, thì đó là khi đề cho $x=2$ chả hạn, so sánh $P$ và $\sqrt{P}$.
Nhưg hầu như sẽ chẳng có đề nào ra kiểu vậy, mà đa số lợi dụng tính chất của phân thức đó để so sánh (ví dụ như trong bài tính chất nổi bật là $P>1$) cho nhanh. Đó là cái hay của đề bài.
Căn x >-1 thì có tìm được x không ạ. Nếu được giải ra giúp mình nhá còn không thì chỉ là tại sao nhá
\(\sqrt{x}>-1=>\sqrt{x}+1>0\)(1)
ta thấy \(\sqrt{x}\ge0=>\sqrt{x}+1\ge1\left(2\right)\)
(1)(2)=>vô lí nên ko tìm đc x
Cách hỏi của bạn thực sự hơi khó hiểu. Mình chỉ trả lời theo cách hiểu của mình về câu hỏi của bạn thôi nhé.
- Thứ nhất, không cần phải tìm điều kiện của số trong giá trị tuyệt đối. Thông thường khi đến đoạn $\sqrt{a^2}=|a|$ thì đề bài đã có sẵn điều kiện $a\geq 0$ hoặc $a< 0$ để bạn tiếp tục thực hiện đến đoạn phá trị tuyệt đối. Ví dụ, cho $a< 0$ thì $\sqrt{a^2}=|a|=-a$
- Thứ hai, trong trường hợp $\sqrt{5a}.\sqrt{45a}-3a$, điều kiện để biểu thức này có nghĩa là $5a\geq 0$ và $45a\geq 0$, hay $a\geq 0$.
Khi đó, để phá căn và xuất hiện trị tuyệt đối, bạn thực hiện $\sqrt{5a}.\sqrt{45a}-3a=\sqrt{225a^2}-3a=\sqrt{(15a)^2}-3a=|15a|-3a=15a-3a=12a$
$(\sqrt{A})^2$ và $\sqrt{A^2}$ khác nhau ở chỗ, ở cái thứ nhất thì bắt buộc điều kiện $A$ phải không âm, để căn thức xác định. Còn cái thứ hai thì $A^2$ luôn không âm rồi nên căn thức xác định với mọi $A$
Vậy, 1 cái thì yêu cầu $A$ luôn không âm từ trước. Một cái $A$ nhận giá trị nào cũng được. Từ đây ta cũng suy ra được:
$(\sqrt{A})^2=A$ không cần dùng trị tuyệt đối vì $A$ đã không âm sẵn rồi.
$\sqrt{A^2}=|A|$ vì không biết $A$ âm hay dương nên phải cho trị tuyệt đối vô để biểu thị căn bậc 2 số học không âm.
Em lưu ý:
- Viết đề bằng công thức toán (biểu tượng $\sum$ bên trái khung soạn thảo) để được hỗ trợ tốt hơn.
- Khi đặt nhiều câu hỏi việc sử dụng dấu "+" đầu dòng nên kết hợp với tách dòng, tách đoạn để câu hỏi trở nên sáng sủa, rõ ràng. Cách đặt câu hỏi em cũng nên lưu ý viết gọn thôi, tập trung vào đúng cái không rõ, không nên dài dòng để câu hỏi được mạch lạc.
Em hiểu đơn giản là em muốn có câu trả lời rõ ràng, mạch lạc thì người trả lời cũng muốn ở em điều ngược lại. Nếu em đặt câu hỏi không được rõ, quá dài thì người đọc sẽ bị ngán hoặc hiểu sai câu hỏi. Do đó, 1 là họ sẽ bỏ qua câu hỏi của em, 2 là họ hiểu lầm nên sẽ có thể không trả lời đúng ý em muốn.