K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2017

Của bạn thiếu dấu bằng .

Ta xét dấu các biểu thức trong dấu GTTĐ để khử dấu gttđ
VD1: Giải pt:
|2x−1|+|2x−5|=4−−(1)|2x−1|+|2x−5|=4−−(1)
Giải:
Ta lập bảng khử dấu gttđ:
bangxetdau.png 
Từ đó ta xét 3 trường hợp sau:
- Xét x<12x<12
(1) trở thành −4x+6=4⇔x<12−4x+6=4⇔x<12, không phụ thuộc vào khoảng đang xét
- Xét 12≤x<5212≤x<52, (1) trở thành 4=44=4 đúng với mọi x khoảng đang xét
- Xét x≥52x≥52:
(1) trở thành 4x−6=4⇔x=524x−6=4⇔x=52, thuộc vào khoảng đang xét
Kết luận: Nghiệm của pt (1) là 12≤x≤5212≤x≤52
Mách nhỏ: Để khỏi nhầm lẫn trong việc lập bảng khử dấu giá trị tuyệt đối, các bạn hãy nhớ lấy câu: "Trái khác, phải cùng" tức là: Bên trái nghiệm của biểu thức sẽ mang dấu khác (trái) với biếu thức ta nhìn thấy, bên phải nghiệm của biểu thức sẽ mang dấu cùng với biểu thức ta nhìn thấy.

Phương pháp 2: Phương pháp biến đổi tương đương
Ta áp dụng 2 phép biến đổi cơ bản sau:
1) |a|=b⇔⎧⎪⎨⎪⎩b≥0[a=ba=−b|a|=b⇔{b≥0[a=ba=−b
2) |a|=|b|⇔[a=ba=−b|a|=|b|⇔[a=ba=−b
VD: Giải pt:
|x−1|=|3x−5|−(2)|x−1|=|3x−5|−(2)
Giải:
Áp dụng phép biến đổi 2 ta có:
(2)⇔[x−1=3x−5x−1=−3x+5(2)⇔[x−1=3x−5x−1=−3x+5
⇔⎡⎣x=2x=32⇔[x=2x=32
Kết luận: pt (2) có 2 nghiệm x1=2;x2=32x1=2;x2=32
Nhận xét: Ta có thể sử dụng phương pháp 1 để giải phương trình (2)
 

25 tháng 8 2017

Xe máy thứ nhất 1 giờ đi được 1/4 quảng đường

Xe máy thứ hai 1 giờ đi được 1/3 quảng đường

Sau 1,5 giờ 2 xe đi được:(1/4+1/3)x1,5=7/12x3/2=7/8(quảng đường)

quảng đường AB là:

15x8=120(km)

25 tháng 8 2017

Xem lại đề đi bạnn

Trả lời đúng giúp mình.

NV
17 tháng 8 2021

Dưới lớp 10 ko có cách nào để giải dạng này (hoặc nếu sử dụng chia trường hợp để giải thì sẽ mất vài trang giấy, không ai làm thế hết)

17 tháng 8 2021

Anh ơi

17 tháng 7 2019

Làm mẫu 1 phần :

a) \(|3x-1|+|x-1|=4\left(1\right)\)

Ta có: \(3x-1=0\Leftrightarrow x=\frac{1}{3}\)

             \(x-1=0\Leftrightarrow x=1\)

Lập bảng xét dấu :

3x-1 x-1 1/3 1 0 0 - - - + + + +

+) Với \(x< \frac{1}{3}\Rightarrow\hept{\begin{cases}3x-1< 0\\x-1< 0\end{cases}\Rightarrow\hept{\begin{cases}|3x-1|=1-3x\\|x-1|=1-x\end{cases}\left(2\right)}}\)

Thay (2) vào (1) ta được :

\(\left(1-3x\right)+\left(1-x\right)=4\)

\(2-4x=4\)

\(4x=-2\)

\(x=\frac{-1}{2}\)( chọn )

+) Với \(\frac{1}{3}\le x< 1\Rightarrow\hept{\begin{cases}3x-1>0\\x-1< 0\end{cases}\Rightarrow\hept{\begin{cases}|3x-1|=3x-1\\|x-1|=1-x\end{cases}\left(3\right)}}\)

Thay (3) vào (1) ta được :
\(\left(3x-1\right)+\left(1-x\right)=4\)

\(2x=4\)

\(x=2\)( chọn )

+) Với \(x\ge1\Rightarrow\hept{\begin{cases}3x-1>0\\x-1>0\end{cases}\Rightarrow}\hept{\begin{cases}|3x-1|=3x-1\\|x-1|=x-1\end{cases}\left(4\right)}\)

Thay (4) vào (1) ta được :

\(\left(3x-1\right)+\left(x-1\right)=4\)

\(4x-2=4\)

\(4x=6\)

\(x=\frac{3}{2}\)( chọn )

Vậy \(x\in\left\{\frac{-1}{2};2;\frac{3}{2}\right\}\)

31 tháng 7 2019

1) \(\left(x-2\right)\left(\frac{x+1}{3}-x+1\right)=0\)

\(\Leftrightarrow\frac{x\left(x+1\right)}{3}-x^2+x-\frac{2\left(x+1\right)}{3}+2x-2=0\)

\(\Leftrightarrow\frac{x\left(x+1\right)}{3}-x^2+3x-\frac{2\left(x+1\right)}{3}-2=0\)

\(\Leftrightarrow x\left(x+1\right)-3x^2+9x-2\left(x+1\right)-6=0\)

\(\Leftrightarrow x^2+x-3x^2+9x-2x-2-6=0\)

\(\Leftrightarrow-2x^2+8x-8=0\)

\(\Leftrightarrow-2\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow-2.\left(x^2-2.x.2+2^2\right)=0\)

\(\Leftrightarrow-2\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x-2=0\)

\(\Leftrightarrow x=2\)

Vậy nghiệm của phương trình là: {2}

2) \(\left(3x+4x\right)\left(\frac{x}{2}-x-\frac{3x}{5}+1\right)=0\)

\(\Leftrightarrow7x\left(\frac{x}{2}-x-\frac{3x}{5}+1\right)=0\)

\(\Leftrightarrow7x\left(-\frac{11x}{10}+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}7x=0\\-\frac{11x}{10}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{11}{10}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{10}{11}\end{cases}}\)

Vậy: nghiệm của phương trình là: \(\left\{0;\frac{10}{11}\right\}\)

3) \(\left|x-1\right|=x^2-x\)

\(\Leftrightarrow x-1=x^2-x\)

\(\Leftrightarrow1=x^2-x-x\)

\(\Leftrightarrow1=x^2\)

\(\Leftrightarrow x^2=1\)

\(\Rightarrow x=\pm1\)

Vậy nghiệm phương trình là: {1; -1}

4) \(\left|x^2-3x+1\right|=2x-3\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-3x+1=2x-3\\x^2-3x+1=-\left(2x-3\right)\end{cases}}\)

Xét  trường hợp này rồi làm tiếp, dễ rồi :))

ĐKXĐ: \(1< x\le\dfrac{3}{2}\)

3 tháng 8 2015

ĐK: \(3-2x\ge0\Leftrightarrow x\le\frac{3}{2}\)

Khi đó; \(\left|2x-3\right|=3-2x\text{ (do }2x-3\le0\text{)}\)

\(pt\Leftrightarrow8+3-2x=2\sqrt{3-2x}\Leftrightarrow\left(\sqrt{3-2x}\right)^2-2\sqrt{3-2x}+1=-7\)

\(\Leftrightarrow\left(\sqrt{3-2x}-1\right)^2=-7\text{ (vô nghiệm)}\)