K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2019

Tích chất đường trung trực. 1 điểm nằm trên đường trung trục thì cách đều 2 đầu mút của đoạn thẳng đó.

Thì tam giác cân luôn

Bài làm

Ví dụ: Cho tam giác ABC có nAH là đường trung trực. Chứng minh rằng: tam giác ABC cân tại A

A B C H

Bài làm
Xét tam giác ABC có:

AH là đường trung trực

=> AB = AC ( tính chất đường trung trực của một tam giác )

Do đó: Tam giác ABC cân tại A ( đpcm )

# Học tốt #

* tam giác đều 
- chứng minh tam giác có 3 cạnh = nhau 
- chứng minh tam giác có 3 góc = nhau 
- chứng minh tam giác có 2 góc = 60* 
- chứng minh tam giác cân có 1 góc = 60* 

Có tổng cộng 4 cách nha

6 tháng 4 2019

ngoài 4 cách ấy ra,đang còn một cách nx đó là:2 đường cao vừa là phân giác vừa là trung tuyến

học tốt!

28 tháng 11 2015

BÀI NÀY KHÓ QUÁ, MK MỚI HỌC LỚP 5, KO BIẾT LÀM ĐÂU, SORRY BẠN !!!!

4 tháng 5 2019

A B C D K M Q

a) b) cậu biết làm rồi nhé

c) Vì K là trung điểm cạnh BC ( gt )

\(\Rightarrow DK\)là trung tuyến cạnh BC.

 Vì A là trung điểm của BD

\(\Rightarrow AC\)là trung tuyến cạnh BD

mà DK cắt AC tại M 

\(\Rightarrow M\)là trọng tâm của tam giác BCD.

\(\Rightarrow MC=\frac{2}{3}AC\left(tc\right)\)

( BẠN TỰ THAY VÀO NHA )

4 tháng 5 2019

d) Vì tam giác BCD cân ( cmt )

\(\Rightarrow BC=DC\left(đn\right)\)

Mà AC là  trung tuyến của tam giác BCD ( cmt )

\(\Rightarrow AC\)cũng là đường phân giác của góc BCD .( tc)

\(\Rightarrow\widehat{BCA}=\widehat{DCA}=\frac{1}{2}\widehat{BCD}\)

Xét tam giác BCM và tam giác DCM có:

    \(\hept{\begin{cases}CMchung\\BC=CD\left(cmt\right)\\\widehat{BCA}=\widehat{DCA}\left(cmt\right)\end{cases}\Rightarrow\Delta BCM=\Delta DCM\left(c-g-c\right)}\)

\(\Rightarrow\hept{\begin{cases}BM=DM\left(2canht.ung\right)\left(1\right)\\\widehat{CBM}=\widehat{CDM}\left(2goct.ung\right)\end{cases}}\)

Xét tam giác BMK và tam giác DMQ có:

   \(\hept{\begin{cases}BM=DM\left(cmt\right)\\\widehat{CDM}=\widehat{CBM}\left(cmt\right)\\\widehat{BMK}=\widehat{QMD}\left(2gocdoidinh\right)\end{cases}\Rightarrow\Delta BMK=\Delta DMQ\left(g-c-g\right)}\) 

 \(\Rightarrow MK=MQ\left(2canht.ung\right)\left(2\right)\)

Vì M là trọng tâm của tam giác BCD (cmt)  (4)

 mà DK là trung tuyến của tam giác BCD (cmt)

\(\Rightarrow DM=2.MK\left(tc\right)\left(3\right)\)

Từ (1), (2) và (3) \(\Rightarrow BM=2.MQ\)

\(\Rightarrow BQ\)là trung tuyến của tam giác BCD (5)

Từ (4) và (5) \(\Rightarrow B,M,Q\)thẳng hàng

19 tháng 2 2019

Không có đk gì về tam giác ABC thì c/m bằng niềm tin à?

19 tháng 2 2019

Không tin có thể vẽ tam giác thường ra với độ dài 3 cạnh khác nhau.Sẽ thấy đề sai=) Giao điểm I cách đều 3 cạnh của tam giác này chứ không cách đều 3 đỉnh nhé.

28 tháng 8 2019

a) Vì hai đường tròn tâm A và B có bán kính bằng nhau nên AM = AN = BM = BN

Xét \(\Delta AMN\)và \(\Delta BMN\)

      AM = BM (cmt)

      AN = BN (cmt)

      MN: cạnh chung 

Suy ra \(\Delta AMN\)\(=\Delta BMN\left(c-c-c\right)\)

b) Gọi O là giao điểm của AB và MN

Dễ chứng minh được: \(\widehat{NAB}=\widehat{MBA}\)

Mà 2 góc này ở vị trí so le trong nên \(AN//BM\)

C/m: \(\Delta AON=\Delta BOM\left(g-c-g\right)\)

\(\Rightarrow OA=OB\)(hai cạnh tương ứng)

Sau đó c/m \(AB\perp MN\)suy ra MN là đường trung trực của AB

Giúp mìk với nha mn!!!! kamsa nhiều ạk!!!! Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD  AB (D AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH   BC (H  BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 : Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên...
Đọc tiếp

Giúp mìk với nha mn!!!! kamsa nhiều ạk!!!! 

Bài 1 :

Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.

a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD  AB (D AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH   BC (H  BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 : 

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a)    Chứng minh BE = DC

b)    Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c)    Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3 :

Cho tam giác ABC cân tại A và có  .

  1. Tính  và 
  2. Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.

Bài 4:

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

  1. Chứng minh : DB = EC.
  2. Gọi O là giao điểm của BD và  EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
  3. Chứng minh rằng : DE // BC.

Bài 5 :

Cho tam giác ABC (AB <AC). Tia phân giác của góc A cắt đường trung trực của BC tại I. kẻ IH vuông góc AB tại H. IK vuông góc AC tại K. chứng minh : BH = CK.

 

3
14 tháng 2 2016

moi hok lop 6

14 tháng 2 2016

bạn gõ nhiều thế chắc mỏi tay lắm

17 tháng 4 2019

Äá» há»c tá»t Toán 7 | Giải toán lá»p 7

​Xét tam giác ABC có AI là đường trung trực vừa là đường phân giác

vì AI là đường trung trực nên AI vuông góc với BC và I là trung điểm cuả BC

xét 2 tam giác vuông ABI và tam giác vuông ACI có;

IA chung

góc BAI=gócCAI (do AI là phân giác)

do đó tam giác BAI =tam giác CAI

suy ra AB=AC (2 cạnh tương ứng)

suy ra tam giác ABC cân tại A (định nghĩa tam giác cân)