Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC, gọi G, H, O lần lượt là trọng tâm, trực tâm và tâm đường tròn ngoại tiếp tam giác ABC. Gọi D là điểm đối xứng của A qua O. Khi đó BHCD là hình bình hành, suy ra trung điểm M của BC cũng là trung điểm của HD. Tam giác AHD có OM là đường trung bình, suy ra OM = ½ AH . Suy ra GM/GA = OM/AH = ½ . Suy ra ΔAHG ∼ ΔMOG (c.g.c)Suy ra H,G, O thẳng hàng và GH = 2GO. Nhận xét. Khi nói đến đường thẳng Euler thì ta chỉ cần cho đường thẳng đi qua hai trong 3 điểm trên.
1) Là tam giác vuông cân
2) Là giao điểm của 3 đường cao
3) Là giao điểm của 3 đường trung tuyến
thi lớp 8 hả ib kb rồi có gì trao đổi đề vs mình
tam giác cân
trực tâm cũa tam giác là giao điểm của 3 đường cao
trọng tâm của tam giác là giao điểm của 3 đường trung tuyến
thi tốt nha!!!
Giả sử tam giác ABC có H vừa là trực tâm, vừa là trọng tâm tam giác ABC. Ta phải chứng minh tam giác ABC đều.
Vì H là trọng tâm tam giác ABC nên AD, BE, CF vừa là các đường cao, vừa là các đường trung tuyến trong tam giác.
Suy ra: AF = BF = AE = CE = BD = CD;
\(AD \bot BC; BE \bot AC; CF \bot AB\)
Xét tam giác ADB và tam giác ADC có:
AD chung
\(\widehat{ADB}=\widehat{ADC} (=90^0)\)
BD = CD (D là trung điểm của đoạn thẳng BC).
Vậy \(\Delta ADB = \Delta ADC\)(c.g.c) nên AB = AC ( 2 cạnh tương ứng).
Tương tự, ta cũng được, AC = BC
Xét tam giác ABC có AB = AC = BC nên là tam giác đều.
Vậy tam giác ABC có trực tâm H cũng là trọng tâm của tam giác thì tam giác ABC đều.
Bạn biết rằng đường trung tuyến của tam giác đều cũng là đường phân giác của tam giác
Mà <A = <B = <C ( dấu góc đó nhe bạn, mình k bik bấm dấu góc ở đâu hết :) )
=> <A / 2 = <B / 2 = <C / 2
=> <A1 = <A2 = <B1 = <B2 = <C1 = <C2
Xét tam giác AHC có: <A1 = <C1 => tam giác AHC là tam giác cân tại H => AH = HC (1)
Xét tam giác HCB có: <C1 = <B2 => tam giác BHC là tam giác cân tại H => HC = HB (2)
Xét tam giác BHA có: <B2 = <A2 => tam giác BHA là tam giác cân tại H => HB = HA (3)
Từ (1), (2), (3) => HA = HB = HC => điều phải chứng minh