K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2023

1) đkxđ \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\y\ge0\end{matrix}\right.\)

Xét biểu thức \(P=x^3+y^3+7xy\left(x+y\right)\)

\(P=\left(x+y\right)^3+4xy\left(x+y\right)\)

\(P\ge4\sqrt{xy}\left(x+y\right)^2\)

Ta sẽ chứng minh \(4\sqrt{xy}\left(x+y\right)^2\ge8xy\sqrt{2\left(x^2+y^2\right)}\)  (*)

Thật vậy, (*)

\(\Leftrightarrow\left(x+y\right)^2\ge2\sqrt{2xy\left(x^2+y^2\right)}\)

\(\Leftrightarrow\left(x+y\right)^4\ge8xy\left(x^2+y^2\right)\)

\(\Leftrightarrow x^4+y^4+6x^2y^2\ge4xy\left(x^2+y^2\right)\) (**)

Áp dụng BĐT Cô-si, ta được:

VT(**) \(=\left(x^2+y^2\right)^2+4x^2y^2\ge4xy\left(x^2+y^2\right)\)\(=\) VP(**)

Vậy (**) đúng \(\Rightarrowđpcm\). Do đó, để đẳng thức xảy ra thì \(x=y\)

Thế vào pt đầu tiên, ta được \(\sqrt{2x-3}-\sqrt{x}=2x-6\)

\(\Leftrightarrow\dfrac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}=2\end{matrix}\right.\)

 Rõ ràng với \(x\ge\dfrac{3}{2}\) thì \(\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}\le\dfrac{1}{\sqrt{\dfrac{2.3}{2}-3}+\sqrt{\dfrac{3}{2}}}< 2\) nên ta chỉ xét TH \(x=3\Rightarrow y=3\) (nhận)

Vậy hệ pt đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(3;3\right)\)

5 tháng 4 2019

 \(ĐK:x\ge1\)

Pt (1)  <=> \(y^2-y\sqrt{x-1}-y+\sqrt{x-1}=0\)

<=> \(\left(y^2-y\right)-\left(y\sqrt{x-1}-\sqrt{x-1}=0\right)\)

<=> \(y\left(y-1\right)-\sqrt{x-1}\left(y-1\right)=0\)

<=> \(\left(y-1\right)\left(y-\sqrt{x-1}\right)=0\Leftrightarrow\orbr{\begin{cases}y-1=0\\y-\sqrt{x-1}=0\end{cases}}\)

+) Với y-1=0 <=> y=1

Thế vào phương trình thứ (2) ta có: \(x^2+1-\sqrt{7x^2-3}=0\Leftrightarrow7x^2+7-7\sqrt{7x^2-3}=0\)

Đặt \(\sqrt{7x^2-3}=t\left(t\ge0\right)\)

Ta có phương trình ẩn t:

\(t^2-7t+10=0\Leftrightarrow\orbr{\begin{cases}t=2\\t=5\end{cases}}\)

Với t =2 ta có: \(\sqrt{7x^2-3}=2\Leftrightarrow7x^2-3=4\Leftrightarrow x^2=1\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x=-1\left(l\right)\end{cases}}\)

Với t=5 ta có: \(\sqrt{7x^2-3}=5\Leftrightarrow7x^2-3=25\Leftrightarrow x^2=4\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-2\left(l\right)\end{cases}}\)

Vậy hệ có 2nghiem (x,y) là (2,1) và (1, 1)

+) Với \(y-\sqrt{x-1}=0\Leftrightarrow y=\sqrt{x-1}\)

Thế vào phương trình (2) ta có:

\(x^2+\sqrt{x-1}-\sqrt{7x^2-3}=0\Leftrightarrow\left(\sqrt{x-1}-1\right)+\left(x^2+1-\sqrt{7x^2-3}\right)=0\)

<=> \(\frac{\left(x-1\right)-1}{\sqrt{x-1}+1}+\frac{x^4+2x^2+1-7x^2+3}{x^2+1+\sqrt{7x^2-3}}=0\Leftrightarrow\frac{x-2}{\sqrt{x-1}+1}+\frac{x^4-5x^2+4}{x^2+1+\sqrt{7x^2-3}}=0\)

<=> \(\frac{x-2}{\sqrt{x-1}+1}+\frac{\left(x^2-1\right)\left(x^2-4\right)}{x^2+1+\sqrt{7x^2-3}}=0\)

<=> \(\left(x-2\right)\left(\frac{1}{\sqrt{x-1}+1}+\frac{\left(x^2-1\right)\left(x+2\right)}{x^2+1+\sqrt{7x^2-3}}\right)=0\)

vì \(\frac{1}{\sqrt{x-1}+1}+\frac{\left(x^2-1\right)\left(x+2\right)}{x^2+1+\sqrt{7x^2-3}}>0\)với mọi lớn hơn hoặc bằng 1

phương trình trên <=> x-2=0<=> x=2 thỏa mãn đk

Với x=2 ta có: \(y=\sqrt{2-1}=1\)

Hệ có 1nghiem (2,1)

Kết luận:... (2, 1), (1,1)

6 tháng 4 2019

Em cảm ơn chị Nguyễn Linh Chi nhiều ạ!

28 tháng 4 2022

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y+1\right)\left(x+y-6\right)=0\\y-x-3=0\left(3\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=-\left(y+1\right)\left(1\right)\\x=6-y\left(2\right)\end{matrix}\right.\\y-x-3=0\left(3\right)\end{matrix}\right.\)

\(thế\left(1\right)\left(2\right)vào\left(3\right)\Rightarrow\left(x;y\right)\)

4:

x+3y=4m+4 và 2x+y=3m+3

=>2x+6y=8m+8 và 2x+y=3m+3

=>5y=5m+5 và x+3y=4m+4

=>y=m+1 và x=4m+4-3m-3=m+1

x+y=4

=>m+1+m+1=4

=>2m+2=4

=>2m=2

=>m=1

3:

x+2y=3m+2 và 2x+y=3m+2

=>2x+4y=6m+4 và 2x+y=3m+2

=>3y=3m+2 và x+2y=3m+2

=>y=m+2/3 và x=3m+2-2m-4/3=m+2/3

6 tháng 9 2017

\(\hept{\begin{cases}x\sqrt{12-y}+\sqrt{y\left(12-x^2\right)}=12\left(1\right)\\x^3-8x-1=2\sqrt{y-2}\left(2\right)\end{cases}}\)

\(\Rightarrow\left(1\right)\Leftrightarrow\sqrt{y\left(12-x^2\right)}=12-x\sqrt{12-y}\)

\(\Leftrightarrow\left(\sqrt{y\left(12-x^2\right)}\right)^2=\left(12-x\sqrt{12-y}\right)^2\)

\(\Leftrightarrow x^2-2x\sqrt{12-y}+\left(12-y\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{12-y}\right)^2=0\)

\(\Leftrightarrow3-y=x^2-9\left(3\right)\)

Ta lại có:

\(\left(2\right)\Leftrightarrow\left(x^3-8x-3\right)=2\left(\sqrt{y-2}-1\right)\)

\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+1\right)=\frac{2\left(y-3\right)}{\sqrt{y-2}+1}\left(4\right)\)

Thay (3) vào (4) ta được:

\(\left(x-3\right)\left(x^2+3x+1\right)+\frac{2\left(x^2-9\right)}{\sqrt{y-2}+1}=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+1+\frac{2\left(x+3\right)}{\sqrt{y-2}+1}\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=3\\y=3\end{cases}}\)

5 tháng 9 2017

Đặt \(\sqrt{x^2-x+1}=a"ĐK:a>0"\)

\(pt\Leftrightarrow\frac{"6^2+3x^4a""4-a^2"}{4"2+a"a^2}=a"2-a"\)

\(\Leftrightarrow"x^6+3x^4a""4-a^2"=4a^3"4-a^2"\)

\(\Leftrightarrow"4-a^2""x^6+3x^4a-4a^3"=0\)

TH1: \(4-a^2=0\Leftrightarrow\orbr{\begin{cases}a=-2\\a=2\end{cases}}\)

Với \(a=2,\sqrt{x^2-x+1}=2\Rightarrow x^2-x-3=0\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{3}+1}{2}\\x=\frac{-\sqrt{13}+1}{2}\end{cases}}\)

TH2: \(x^6+3x^4a-4a^3=0\Rightarrow x^6-4x^4a-4x^2a^2+4x^2a^2-4a^3=0\)

\(\Leftrightarrow"x^2-a""x^4+4x^2a+4a^2"=0\Leftrightarrow"x^2-a""x^2+2a"^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=a\\x^2=-2a\end{cases}}\)

Với \(x^2=a\Rightarrow x^2=\sqrt{x^2-x+1}\)

P/s: Tham khảo thôi đừng có chép nguyên vào

Thay dấu ngoặc kép thành ngoặc đơn nha

5 tháng 7 2020

HPT: \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=8\\x-y=12\end{cases}}\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{x-12}=8\)

\(\Leftrightarrow\frac{x-12+x-8x^2+96x}{x^2-12x}=0\)

\(\Leftrightarrow8x^2-98x+12=0\)

\(\Leftrightarrow4x^2-49x+6=0\)

\(\Leftrightarrow4\left(x-\frac{49}{8}\right)^2=\frac{2305}{16}\)

\(\Leftrightarrow x=\pm\frac{\sqrt{2305}+49}{8}\)'

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{49+\sqrt{2305}}{8}\Leftrightarrow y=\frac{-47+\sqrt{2305}}{8}\\x=\frac{49-\sqrt{2305}}{8}\Leftrightarrow y=-\frac{47+\sqrt{2305}}{8}\end{cases}}\)

Kết luận nghiệm .....

p/s : nghiệm xấu quá đi :(((