K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2022

a: Vì (d) đi qua A(0;3) và B(2;2) nên ta có hệ:

0a+b=3 và 2a+b=2

=>b=3 và 2a=2-b=-1

=>a=-1/2; b=3

b: (d): y=-1/2x+3

Thay x=4 và y=1 vào (d), ta được

3-1/2*4=1(đúng)

=>A,B,C thẳng hàng

16 tháng 7 2021

a) Gọi pt đường thẳng AB là \(y=ax+b\)

\(\Rightarrow\left\{{}\begin{matrix}1=a+b\\-1=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=2\\b=-1\end{matrix}\right.\Rightarrow y=2x-1\)

b) Thế \(C\left(2;3\right)\) vào pt đường thẳng AB thì ta thấy \(3=2.2-1\)

\(\Rightarrow C\in\) đường thẳng AB \(\Rightarrow A,B,C\) thẳng hàng

 

26 tháng 5 2021

Gọi d: y = ax + b là đường thẳng đi qua hai điểm A, B.

Ta có \(\left\{{}\begin{matrix}2a+b=1\\-a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=-3\\b-a=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=3\end{matrix}\right.\).

Do đó đường thẳng đi qua A, B là y = -x + 3.

Thay x = 3 vào ta được y = 0 nên C(3; 0) thuộc đường thẳng đó

- Tìm giao của hai đường thẳng, sau đó chứng minh đường thẳng thứ ba đi qua giao điểm đó.

- Sử dụng tính chất đồng quy trong tam giác:

+ Ba đường trung tuyến của tam giác đồng quy tại trọng tâm tam giác.

+ Ba đường phân giác.đồng quy tại tâm đường tròn nội tiếp tam giác.

+ Ba đường trung trực đồng quy tại tâm đường tròn ngoại tiếp tam giác.

+ Ba đường cao đồng quy tại trực tâm tam giác.

- Đặc biệt ba điểm trọng tâm, trực tâm và tâm đường tròn ngoại tiếp thẳng hàng nhau. Đường thẳng đi qua ba điểm đó được gọi là đường thẳng Euler của tam giác

- Sử dụng định lý Ceva: Cho tam giác ABC và ba điểm bất kì M,N,P nằm trên ba cạnh BC,CA,AB. Khi đó ba đường thẳng AM,BN,CP đồng quy khi và chỉ khi : 


\(\frac{MB}{MC}.\frac{NC}{NA}.\frac{PA}{PB}=1\)

23 tháng 12 2021

1.Sử dụng tính chất đồng quy của ba đường trung tuyến, đường cao, phân giác, trung trực trong tam gíac

2.Sử dụng tính chất của đường chéo của các tứ giác đặc biệt