Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
:
\(\left|x-2,5\right|+\left|3,5-x\right|=0\)
ta có \(\left|x-2,5\right|\ge0\)
\(\left|3,5-x\right|\ge0\)
nên \(\left|x-2,5\right|+\left|3,5-x\right|\ge0\)
để \(\left|x-2,5\right|+\left|3,5-x\right|=0\) thì \(\hept{\begin{cases}x-2,5=0\\3,5-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2,5\\x=3,5\end{cases}}}\)(vô lí)
vì x không thể xuất hiện 2 lần trong 1 trường hợp vậy x có 0 phần tử thỏa mãn yêu cầu đề bài đã cho.
\(\left|x-2,5\right|\ge0\)
\(\left|3,5-x\right|\ge0\)
\(\Rightarrow\left|x-2,5\right|+\left|3,5-x\right|\ge0\)
Do vậy
\(\hept{\begin{cases}\left|x-2,5\right|=0\\\left|3,5-x\right|=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2,5\\x=3,5\end{cases}}}\)( vô lý )
Vậy có 0 phần tử của tập hợp các số x thỏa mãn đề bài
=> x-2,5 = 0và 3,5-x = 0
=> x = 2,5 và x = 3,5
=> ko có x thỏa mãn
\(\sqrt{x}=x\)
\(\Rightarrow x=x^2\)
\(\Rightarrow x^2-x=0\)
\(\Rightarrow x\left(x-1\right)=0\)
\(\Rightarrow x=0\) hoặc \(x-1=0\)
+) \(x=0\)
+) \(x-1=0\Rightarrow x=1\)
Vậy \(x\in\left\{0;1\right\}\)
@Tks cj đã góp ý