K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2019

Giải bài 3 trang 97 SGK Toán 8 Tập 2 | Giải toán lớp 8

Vì ABCD.A1B1C1D1 là hình hộp chữ nhật

⇒ DCC1D1 và CBB1C1 là hình chữ nhật.

⇒ CC1 = BB1 = 3cm

ΔDCC1 vuông tại C, áp dụng định lí Py-ta–go ta có:

DC12 = DC2 + CC12

Giải bài 3 trang 97 SGK Toán 8 Tập 2 | Giải toán lớp 8

ΔCBB1 vuông tại B, áp dụng định lí Py–ta-go ta có:

CB12= CB2 + BB12

Giải bài 3 trang 97 SGK Toán 8 Tập 2 | Giải toán lớp 8

22 tháng 4 2017

Giải bài 3 trang 97 SGK Toán 8 Tập 2 | Giải toán lớp 8

Vì ABCD.A1B1C1D1 là hình hộp chữ nhật nên DCC1D1 và CBB1C1 là hình chữ nhật.

=> CC1 = BB1 = 3cm

Giải bài 3 trang 97 SGK Toán 8 Tập 2 | Giải toán lớp 8

26 tháng 11 2016

5cm

26 tháng 11 2016

gọi chiều dài, chiều rộng và đường chéo của hình chữ nhật đó lần lượt là a,b,c . Áp dụng định lí Pitago ta có:

\(a^2+b^2=c^2\)

<=> 4^2 + 3^2 = c^2

=> c^2 = 25

=> \(c=\sqrt{25}=5\)

Vậy độ dài đường chéo của hình chữ nhật là 5cm

KIỂM TRA 1 Tiết – HÌNH HỌC 8 CHƯƠNG I I) TRẮC NGHIỆM: ( 2đ) Hãy khoanh tròn chữ cái đứng trước kết quả đúng1/ Trong các hình sau, hình không có tâm đối xứng là:A . Hình vuông B . Hình thang cân C . Hình bình hành D . Hình thoi2/ Trong các hình sau, hình không có trục đối xứng là:A . Hình vuông B . Hình thang cân C . Hình bình hành D . Hình thoi3/ Một hình thang có 2 đáy dài 6cm và 4cm. Độ...
Đọc tiếp

KIỂM TRA 1 Tiết – HÌNH HỌC 8 CHƯƠNG I

 

I) TRẮC NGHIỆM: ( 2đ) Hãy khoanh tròn chữ cái đứng trước kết quả đúng

1/ Trong các hình sau, hình không có tâm đối xứng là:

A . Hình vuông B . Hình thang cân C . Hình bình hành D . Hình thoi

2/ Trong các hình sau, hình không có trục đối xứng là:

A . Hình vuông B . Hình thang cân C . Hình bình hành D . Hình thoi

3/ Một hình thang có 2 đáy dài 6cm và 4cm. Độ dài đường trung bình của hình thang đó là:

A . 10cm B . 5cm C . √10 cm D . √5cm

4/ Tứ giác có hai cạnh đối song song và hai đường chéo bằng nhau là:

A . Hình vuông B . Hình thang cân C . Hình bình hành D . Hình chữ nhật

5/ Một hình thang có một cặp góc đối là: 1250 và 650. Cặp góc đối còn lại của hình thang đó là:

A . 1050 ; 450 B . 1050 ; 650

C . 1150 ; 550 D . 1150 ; 650

6/ Cho tứ giác ABCD, có ∠A = 800; ∠B =1200, ∠D = 500. Số đo góc C là?

A. 1000 , B. 1500, C. 1100, D. 1150

7/ Góc kề 1 cạnh bên hình thang có số đo 750, góc kề còn lại của cạnh bên đó là:

A. 850 B. 950 C. 1050 D. 1150

8/ Độ dài hai đường chéo hình thoi là 16 cm và 12 cm. Độ dài cạnh của hình thoi đó là:

A 7cm, B. 8cm, C. 9cm, D. 10 cm

II/TỰ LUẬN (8đ)

Bài 1: ( 2,5 đ) Cho tam giác ABC cân tại A, M là trung điểm của BC, Từ M kẻ các đường ME song song với AC ( E ∈ AB ); MF song song với AB ( F ∈ AC ). Chứng minh Tứ giác BCEF là hình thang cân.

Bài 2. ( 5,5đ)Cho tam giác ABC góc A bằng 90o. Gọi E, G, F là trung điểm của AB, BC, AC. Từ E kẻ đường song song với BF, đường thẳng này cắt GF tại I.

a) Tứ giác AEGF là hình gì ?

b) Chứng minh tứ giac BEIF là hình bình hành

c) Chứng minh tứ giác AGCI là hình thoi

d) Tìm điều kiện để tứ giác AGCI là hình vuông.

1

Bài 1: 

Xét ΔABC có 

M là trung điểm của BC

ME//AC

Do đó: E là trung điểm của AB

Xét ΔABC có 

M là trung điểm của BC

MF//AB

DO đó: F là trung điểm của AC

Xét ΔABC có 

E là trung điểm của AB

F là trung điểm của AC
Do đó: EF là đường trung bình

=>EF//BC

hay BEFC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BEFC là hình thang cân

6 tháng 4 2018

Thể tính hình hộp chữ nhật là:

      \(V=3\sqrt{2}.4\sqrt{2}.5=120\left(cm^3\right)\)

23 tháng 10 2016

Áp dụng định lý Pi - ta - go, ta có :

\(AB=\sqrt{CA^2+CB^2}=\sqrt{3^2+4^2}=\sqrt{25}=5cm\)

Áp dụng định lý ' Trong tam giác vuông , trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền ' ở đây là

\(CM=\frac{.AB}{2}=\frac{5}{2}=2,5cm\)

A C B 3cm 4cm

14 tháng 10 2016

CM=2,5 cm

 

25 tháng 4 2017

Chọn B vì :

Diện tích đáy của hình lăng trụ đứng tam giác là : 3.4.5 = 60

Thể tích của hình lăng trụ đứng tam giác là : 60.6 = 360(\(^{cm^3}\))

Tham khảo:

10 tháng 3 2019

a, \(\frac{2x}{x+1}+\frac{18}{x^2+2x-3}=\frac{2x-5}{x+3}\)

\(\Leftrightarrow\frac{2x}{x+1}+\frac{18}{\left(x+3\right)\left(x-1\right)}=\frac{2x-5}{x+3}\)

\(\Leftrightarrow\frac{2x\left(x-1\right)\left(x+3\right)}{\left(x+1\right)\left(x-1\right)\left(x+3\right)}+\frac{18\left(x+1\right)}{\left(x+3\right)\left(x-1\right)\left(x+1\right)}=\frac{\left(2x-5\right)\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+3\right)\left(x+1\right)}\)

\(\Leftrightarrow2x\left(x-1\right)\left(x+3\right)+18\left(x+1\right)=\left(2x+5\right)\left(x+1\right)\left(x-1\right)\)

\(\Leftrightarrow2x^3+4x^2-6x+18x+18=2x^3-2x+5x^2-5\)

\(\Leftrightarrow-x^2+14x+23=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=7-6\sqrt{2}\\x=7+6\sqrt{2}\end{cases}}\)

Vậy...