K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2018

Đáp án A

Phương trình 12x + (4 – m).3x – m = 0 <=> 12x + 4.3x = m(3x + 1)

⇔ m = 12 x + 4 . 3 x 3 x + 1

Xét hàm số  f x = 12 x + 4 . 3 x 3 x + 1  trên khoảng (–1;0)

f ' x = 12 x . 3 x + 1 . ln 12 - 12 x - 4 . ln 3 3 x + 1 2

Ta có

12 x . 3 x + 1 . ln 12 - 12 x - 4 . ln 3 = 12 x . 3 x . ln 12 - ln 3 + 12 x . ln 2 + 4 . ln 3 > 0 ; ∀ x ∈ - 1 ; 0

Khi đó f(x) > 0;  ∀ x ∈ - 1 ; 0  suy ra f(x) là hàm số đồng biến trên khoảng (–1;0)

Tính các giá trị  f - 1 = 17 16 ; f 0 = 5 2

⇒ m i n   f x = 17 16 ;   m a x   f x = 5 2

Nên để phương trình (*) có nghiệm <=> min f(x) < m > max f(x)

⇒ m ∈ 17 6 ; 5 2

14 tháng 5 2019

Chọn D

21 tháng 11 2023

Đầu tiên, ta cần tìm điểm cực trị của hàm số f(x) = x^3 - 3x^2 + m. Điều kiện cần và đủ để x_0 là điểm cực trị của hàm số y = f(x) là f’(x_0) = 0 và f’'(x_0) ≠ 0.

Ta có f’(x) = 3x^2 - 6x và f’'(x) = 6x - 6.

Giải phương trình f’(x) = 0, ta được x_1 = 0 và x_2 = 2. Kiểm tra điều kiện thứ hai, ta thấy f’‘(0) = -6 ≠ 0 và f’'(2) = 6 ≠ 0 nên x_1 = 0 và x_2 = 2 là hai điểm cực trị của hàm số.

Vậy, A = (0, f(0)) = (0, m) và B = (2, f(2)) = (2, 4 - m).

Trọng tâm G của tam giác OAB có tọa độ (x_G, y_G) = (1/3 * (x_A + x_B + x_O), 1/3 * (y_A + y_B + y_O)) = (2/3, 1/3 * (m + 4)).

Để G thuộc đường thẳng 3x + 3y - 8 = 0, ta cần có 3 * (2/3) + 3 * (1/3 * (m + 4)) - 8 = 0. Giải phương trình này, ta được m = 2.

Vậy, đáp án là B. m = 2.

27 tháng 8 2018

Đáp án B

Đặt t = 2x > 1

PT

Dựa vào bảng biến thiên, suy ra m < -2

28 tháng 8 2019

Chọn A.

6 tháng 6 2023

Ta có:

\(y'=x^2-2mx+m^2-4\)

\(y''=2x-2m,\forall x\in R\)

Để hàm số \(y=\dfrac{1}{3}x^3-mx^2+\left(m^2-4\right)x+3\) đạt cực đại tại x = 3 thì:

\(\left\{{}\begin{matrix}y'\left(3\right)=0\\y''\left(3\right)< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2-6m+5=0\\6-2m< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m=1,m=5\\m>3\end{matrix}\right.\Leftrightarrow m=5\)

=> B.

27 tháng 9 2019

Đáp án: B.

Với m = 0, phương trình 2 x 3  - 5 = 0 có nghiệm duy nhất.

Với m ≠ 0, đồ thị hàm số y = 2 x 3  + 3m x 2  - 5 chỉ cắt Ox tại một điểm khi y CĐ . y CT  > 0. Ta có y' = 6 x 2  + 6mx = 6x(x + m) = 0 có hai nghiệm là x = 0, x = -m; y(0) = -5, y(-m) = -2 m 3  + 3 m 3  - 5 =  m 3  - 5.

Suy ra y(0).y(-m) = -5( m 3  - 5) > 0 ⇔ m <  5 3

15 tháng 12 2017

NV
9 tháng 4 2022

\(\Delta'=m^2-8m+12\)

TH1: \(\Delta'< 0\Rightarrow\) phương trình có 2 nghiệm phức \(z_1;z_2\)

Do \(z_1=m-\sqrt[]{\Delta'};z_2=m+\sqrt{\Delta'}\Rightarrow z_1;z_2\) luôn luôn là 2 số phức liên hợp

\(\Rightarrow\left|z_1\right|=\left|z_2\right|\) luôn đúng khi \(m^2-8m+12< 0\)

\(\Rightarrow2< m< 6\Rightarrow m=\left\{3;4;5\right\}\)

TH2: \(\Delta'=0\Rightarrow m^2-8m+12=0\Rightarrow m=\left\{2;6\right\}\) pt có nghiệm kép (ktm)

TH3: \(\Delta'>0\Rightarrow\left[{}\begin{matrix}m>6\\m< 2\end{matrix}\right.\)

Pt có 2 nghiệm thực phân biệt, để \(\left|z_1\right|=\left|z_2\right|\Rightarrow\left[{}\begin{matrix}z_1=z_2\left(loại\right)\\z_1=-z_2\end{matrix}\right.\)

\(\Rightarrow z_1+z_2=0\Rightarrow2m=0\Rightarrow m=0\)

Vậy \(m=\left\{0;3;4;5\right\}\) có 4 giá trị nguyên của m

9 tháng 4 2022

con cảm ơn nhiều ạ, cho con hỏi tí là trong TH2 pt có nghiệm kép là sao ạ?

NV
10 tháng 3 2023

\(f^2\left(\left|x\right|\right)-\left(m-6\right)f\left(\left|x\right|\right)-m+5=0\) có \(a-b+c=0\) nên có các nghiệm \(\left[{}\begin{matrix}f\left(\left|x\right|\right)=-1\\f\left(\left|x\right|\right)=m-5\end{matrix}\right.\)

- Với \(f\left(\left|x\right|\right)=-1\Rightarrow\left|x\right|^2-4\left|x\right|+3=-1\Rightarrow\left|x\right|=2\Rightarrow x=\pm2\) có 2 nghiệm

- Xét \(f\left(\left|x\right|\right)=m-5\Leftrightarrow\left|x\right|^2-4\left|x\right|+8=m\) (1)

Từ BBT của \(y=\left|x\right|^2-4\left|x\right|+8\) dễ dàng suy ra (1) có 4 nghiệm pb khi \(4< m< 8\)

\(\Rightarrow m=\left\{5;6;7\right\}\) có 3 giá trị nguyên