K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2020

x3( z - y ) + y3( x - z ) + z3( y - x )

= x3z - x3y + z3y - z3x + y3( x - z )

= ( x3z - z3x ) - ( x3y - z3y ) + y3( x - z )

= xz( x2 - z2 ) - y( x3 - z3 ) + y3( x - z )

= xz( x - z )( x + z ) - y( x - z )( x2 + xz + z2 ) + y3( x - z )

= ( x - z )[ xz( x + z ) - y( x2 + xz + z2 ) + y3 ]

= ( x - z )( x2z + xz2 - x2y - xyz - z2y + y3 )

= ( x - z )[ ( x2z - x2y ) + ( xz2 - xyz ) - ( z2y - y3 ) ]

= ( x - z )[ x2( z - y ) + xz( z - y ) - y( z2 - y2 ) ]

= ( x - z )[ x2( z - y ) + xz( z - y ) - y( z - y )( z + y ) ]

= ( x - z )( z - y )[ x2 + xz - y( z + y ) ]

= ( x - z )( z - y )( x2 + xz - yz - y2 )

= ( x - z )( z - y )[ ( x2 - y2 ) + ( xz - yz ) ]

= ( x - z )( z - y )[ ( x - y )( x + y ) + z( x - y ) ]

= ( x - z )( z - y )( x - y )( x + y + z )

27 tháng 7 2015

nhiều thế. đăng 1 lần 1 - 2 câu thui chứ

11 tháng 5 2020

Đặt: x - y = a ; 3x + y - z = b ; -4x + z = c 

Ta có: a + b +  c  = x - y + 3x + y - z - 4x + z = 0 

Khi đó: \(\left(x-y\right)^3+\left(3x+y-z\right)^3+\left(-4x+z\right)^3\)

\(a^3+b^3+c^3\)

\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc+ac\right)+3abc\)

\(0.\left(a^2+b^2+c^2-ab-bc+ac\right)+3abc\)

\(3abc\)

\(3\left(x-y\right)\left(3x+y-z\right)\left(-4x+z\right)\)

12 tháng 5 2020

cảm ơn ạ 

12 tháng 8 2016

bài a) bn trên đã dẫn link cho bn r

bài b)

Đặt x-y=a;y-z=b;z-x=c 

\(=>a+b+c=x-y+y-z+z-x=0\)

\(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=a^3+b^3+c^3\)

Theo câu a)\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\) (do a+b+c=0)

\(=>a^3+b^3+c^3=3abc=>\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\)

a) Ta có :

\(a^3+b^3+c^3-3abc\)

\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(\Rightarrow\left(a+b+c\right)\left[\left(a+b^2\right)-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

P/s tham khảo nha

hok tốt

20 tháng 8 2020

\(8xy^3+x\left(x-y\right)^3\)

\(=x\left[8y^3+\left(x-y\right)^3\right]\)

\(=x\left[\left(2y\right)^3+\left(x-y\right)^3\right]\)

\(=x\left(2y+x-y\right)\left[\left(2y\right)^2-2y\left(x-y\right)+\left(x-y\right)^2\right]\)

\(=x\left(x+y\right)\left(4y^2-2xy+2y^2+x^2-2xy+y^2\right)\)

\(=x\left(x+y\right)\left(7y^2+x^2-4xy\right)\)

10 tháng 7 2017

a) xy(x + y) + yz(z + y) + zx(z + x) + 3xyz

= [xy(x + y) + xyz] + [yz(z + y) + xyz] + [zx(z + x) + xyz]

= xy(x + y + z) + yz(x + y + z) + zx(x + y + z)

= (xy + yz + zx)(x + y + z)

b) Vô câu hỏi tương tự 

26 tháng 7 2017

a) xy(x + y) + yz(z + y) + zx(z + x) + 3xyz

= [xy(x + y) + xyz] + [yz(z + y) + xyz] + [zx(z + x) + xyz]

= xy(x + y + z) + yz(x + y + z) + zx(x + y + z)

= (xy + yz + zx)(x + y + z)

b) tương tự 

17 tháng 8 2018

Áp dụng \(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)

\(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)

\(=x^3+y^3+3xy\left(x+y\right)+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3\)

\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)

\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)

\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

1 tháng 11 2016

a) Ta có:
x³ + y³ + z³ - 3xyz = (x+y)³ - 3xy(x-y) + z³ - 3xyz
= [(x+y)³ + z³] - 3xy(x+y+z)
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z)
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy]
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy)
= (x+y+z)(x² + y² + z² - xy - xz - yz).

 

 

1 tháng 11 2016

giải giùm mình bài b luôn đi

 

 

 

Phân tích đa thức (x^2 + y^2 + z^2)(x + y + z)^2 + (xy + yz + zx)^2 thành nhân tử

phân tích đa thức thành nhân tử đặt biến phụ

(x2 + y2 + z2)(x + y + z)2 + (xy + yz + zx)2

 
 Theo dõi Vi phạm
 
 
 
 
 
 
 
 
 
 
VDO.AI

Trả lời (1)

 
 
 
  • Bùi Xuân Chiến

    (x+ y+ z2)(x + y + z)2 + (xy + yz +zx)2

    = (x+ y+ z2)(x+ y+ z+ 2xy +2yz +2zx) + (xy + yz + zx)2

    = (x+ y+ z2)(x2 + y2 + z2) + (x+ y2 + z2)(2xy + 2yz + 2zx) + (xy + yz +zx)2

    = (x+ y2 + z2)2 + 2(x+ y2 + z2)(xy + yz + zx) + (xy + yz + zx)2

    = (x2 + y2 + z+ xy + yz + zx)2

    Đảm bảo ko phân tích tiếp đc nữa đâu ^^, đây tuy ko phải cách đặt biến phụ nhưng cách này chắc ngắn hơn cách đặt biến phụ.

      bởi Bùi Xuân Chiến 1.png