Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\left(xy+yz+zx\right)-x^2-y^2-z^2\)
\(2xy+2yz+2zx-x^2-y^2-z^2\)
\(-\left(x^2+y^2+z^2-2xy-2yz-2xz\right)\)
\(-\left(x+y+z\right)^2\)
\(a,=\left(xy-1-x-y\right)\left(xy-1+x+y\right)\\ b,Sửa:a^3+2a^2+2a+1\\ =a^3+a^2+a^2+a+a+1=\left(a+1\right)\left(a^2+a+1\right)\\ c,=1-4a^2-a\left(a^2-4\right)=1-4a^2-a^3+4a\\ =\left(1-a\right)\left(1+a+a^2\right)+4a\left(1-a\right)\\ =\left(1-a\right)\left(1+5a+a^2\right)\\ d,=\left(a^2-a^2b^2\right)+\left(b^2-b\right)+\left(ab-a\right)\\ =a^2\left(1-b\right)\left(1+b\right)+b\left(b-1\right)+a\left(b-1\right)\\ =\left(b-1\right)\left(-a^2-ab+b+a\right)\\ =\left(b-1\right)\left(b-1\right)\left(a+b\right)\left(1-a\right)\)
\(e,=x^2y+xy^2-yz\left(y+z\right)+x^2z-xz^2\\ =\left(x^2y+x^2z\right)+\left(xy^2-xz^2\right)-yz\left(y+z\right)\\ =x^2\left(y+z\right)+x\left(y-z\right)\left(y+z\right)-yz\left(y+z\right)\\ =\left(y+z\right)\left(x^2+xy-xz-yz\right)\\ =\left(y+z\right)\left(x+y\right)\left(x-z\right)\)
\(f,=xyz-xy-yz-xz+x+y+z-1\\ =xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+\left(x-1\right)\\ =\left(z-1\right)\left(xy-y-x+1\right)=\left(z-1\right)\left(x-1\right)\left(y-1\right)\)
a) xy(x + y) + yz(z + y) + zx(z + x) + 3xyz
= [xy(x + y) + xyz] + [yz(z + y) + xyz] + [zx(z + x) + xyz]
= xy(x + y + z) + yz(x + y + z) + zx(x + y + z)
= (xy + yz + zx)(x + y + z)
b) Vô câu hỏi tương tự
a) xy(x + y) + yz(z + y) + zx(z + x) + 3xyz
= [xy(x + y) + xyz] + [yz(z + y) + xyz] + [zx(z + x) + xyz]
= xy(x + y + z) + yz(x + y + z) + zx(x + y + z)
= (xy + yz + zx)(x + y + z)
b) tương tự
\(x\left(y^2-z^2\right)+y\left(z^2-x^2\right)+z\left(x^2-y^2\right)\)
\(=xy^2-xz^2+yz^2-x^2y+zx^2-zy^2\)
\(=xy^2-xz^2+yz^2-x^2y+zx^2-zy^2-xyz+xyz\)
\(=\left(yz^2-xz^2-xyz+x^2z\right)-\left(zy^2-xyz-xy^2+x^2y\right)\)
\(=z\left(yz-xz-xy+x^2\right)-y\left(zy-xz-xy+x^2\right)\)
\(=\left(z-y\right)\left(yz-xz-xy+x^2\right)\)
\(=\left(z-y\right)\left[y\left(z-x\right)-x\left(z-x\right)\right]\)
\(=\left(z-y\right)\left(y-x\right)\left(z-x\right)\)
phân tích đa thức thành nhân tử đặt biến phụ
(x2 + y2 + z2)(x + y + z)2 + (xy + yz + zx)2
Theo dõi Vi phạm Toán 8 Bài 6Trắc nghiệm Toán 8 Bài 6Giải bài tập Toán 8 Bài 6Trả lời (1)(x2 + y2 + z2)(x + y + z)2 + (xy + yz +zx)2
= (x2 + y2 + z2)(x2 + y2 + z2 + 2xy +2yz +2zx) + (xy + yz + zx)2
= (x2 + y2 + z2)(x2 + y2 + z2) + (x2 + y2 + z2)(2xy + 2yz + 2zx) + (xy + yz +zx)2
= (x2 + y2 + z2)2 + 2(x2 + y2 + z2)(xy + yz + zx) + (xy + yz + zx)2
= (x2 + y2 + z2 + xy + yz + zx)2
Đảm bảo ko phân tích tiếp đc nữa đâu ^^, đây tuy ko phải cách đặt biến phụ nhưng cách này chắc ngắn hơn cách đặt biến phụ.
bởi Bùi Xuân Chiến