K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2018

Khi x ,   y ≥ 0 thì hệ trở thành x + 2 y = 3 7 x + 5 y = 2 ⇔ x = − 11 9 ; y = 19 9    l o ạ i

Khi x ,   y < 0 thì hệ trở thành − x − 2 y = 3 7 x + 5 y = 2 ⇔ x = 19 9 ; y = − 23 9   l o ạ i

Khi x ≥ 0 ,   y < 0 thì hệ trở thành x − 2 y = 3 7 x + 5 y = 2 ⇔ x = 1 ; y = − 1   n h ậ n  

Khi x < 0 ,   y ≥ 0 thì hệ trở thành − x + 2 y = 3 7 x + 5 y = 2 ⇔ x = − 11 9 ; y = 23 9   n h ậ n  

Đáp án cần chọn là: C

30 tháng 12 2020

ĐKXĐ: \(x\ge0;y\ge1\).

Đặt \(\left\{{}\begin{matrix}\sqrt[4]{y^3-1}=a\ge0\\\sqrt{x}=b\ge0\end{matrix}\right.\).

HPT đã cho trở thành:

\(\left\{{}\begin{matrix}a+b=3\\a^4+b^4=81\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=3\\\left(a+b\right)^4-2ab\left(2a^2+3ab+2b^2\right)=81\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=3\\ab\left(2a^2+3ab+2b^2\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a=3;b=0\\a=0;b=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9;y=1\\x=0;y=\sqrt[3]{82}\end{matrix}\right.\).

 

 

30. Viết pt tham số của đg thẳng đi qua 2 điểm A ( 3;-7) và B(1;-7) A. x =t ; y =-7 B. x=t ; y =7 C. x=t ; y = -7-t D. x = 3-7t; y = 1-7t 31. Trong mặt phẳng toạ độ Oxy , viết pt tổng quát của đg trung trực của đoạn thẳng AB với A(2;3) và B(-4;-1). A. 3x - 2y +5 =0 B. 3x - 2y -5=0 C. 3x +2y +1 =0 D. 3x +2y -1=0 32. Trong mặt phẳng toạ độ Oxy , viết pt tổng quát của đg thẳng đi qua giao điểm của d1 : 3x - 5y +2=0 và d2 : 5x...
Đọc tiếp

30. Viết pt tham số của đg thẳng đi qua 2 điểm A ( 3;-7) và B(1;-7)

A. x =t ; y =-7

B. x=t ; y =7

C. x=t ; y = -7-t

D. x = 3-7t; y = 1-7t

31. Trong mặt phẳng toạ độ Oxy , viết pt tổng quát của đg trung trực của đoạn thẳng AB với A(2;3) và B(-4;-1).

A. 3x - 2y +5 =0

B. 3x - 2y -5=0

C. 3x +2y +1 =0

D. 3x +2y -1=0

32. Trong mặt phẳng toạ độ Oxy , viết pt tổng quát của đg thẳng đi qua giao điểm của d1 : 3x - 5y +2=0 và d2 : 5x -2y +4=0 đồng thời sống song với đg thẳng d3 : 2x - y +4=0

A. 2x - y + 30/19 =0

B. 2x -y - 30/19=0

C. x +2y + 30/19=0

D. x +2y - 30/19=0

33. Trong mặt phẳng toạ độ Oxy , cho tg ABC với A(-1;2), B(1;1) , C(2;-1) . Viết pt tổng quát đg cao AH của tg ABC.

A. AH : x -2y +3=0

B. AH: 2x +y =0

C. AH : x -2y +5=0

D. AH: 2x - y +4 =0

34. Cho tg ABC có toạ độ các đỉnh là A(-1;1) và B(4;7) , C( 3;-2), M là trung điểm của đoạn thẳng AB. Viêt pt tham số của đg thẳng CM.

A. x = 3+t ; y = -2-4t

B. x = 3+t ;y = -2 + 4t

C. x = 3-t ; y = 4+2t

D. x = 3+3t ; y = -2+4t

2
NV
11 tháng 4 2020

Câu 32:

Gọi M là giao điểm d1;d2 thì tọa độ M là nghiệm của hệ:

\(\left\{{}\begin{matrix}3x-5y+2=0\\5x-2y+4=0\end{matrix}\right.\) \(\Rightarrow M\left(-\frac{16}{19};-\frac{2}{19}\right)\)

Do d song song d3 nên d nhận \(\left(2;-1\right)\) là 1 vtpt

Phương trình d:

\(2\left(x+\frac{16}{19}\right)-1\left(y+\frac{2}{19}\right)=0\Leftrightarrow2x-y+\frac{30}{19}=0\)

Câu 33:

\(\overrightarrow{BC}=\left(1;-2\right)\)

Do AH vuông góc BC nên AH nhận \(\left(1;-2\right)\) là 1 vtpt

Phương trình AH:

\(1\left(x+1\right)-2\left(y-2\right)=0\Leftrightarrow x-2y+5=0\)

Câu 34:

Tọa độ M là: \(M\left(\frac{3}{2};4\right)\)

\(\overrightarrow{CM}=\left(-\frac{3}{2};6\right)=-\frac{3}{2}\left(1;-4\right)\)

Phương trình tham số CM: \(\left\{{}\begin{matrix}x=3+t\\y=-2-4t\end{matrix}\right.\)

NV
11 tháng 4 2020

Câu 30:

\(\overrightarrow{AB}=\left(-2;0\right)=-2\left(1;0\right)\) nên đường thẳng AB nhận \(\left(1;0\right)\) là 1 vtcp

Phương trình AB: \(\left\{{}\begin{matrix}x=1+t\\y=-7\end{matrix}\right.\)

Cả 4 đáp án đều ko chính xác

Câu 31:

Gọi M là trung điểm AB \(\Rightarrow M\left(-1;1\right)\)

\(\overrightarrow{AB}=\left(-6;-4\right)=-2\left(3;2\right)\Rightarrow\) đường trung trực AB nhận \(\left(3;2\right)\) là 1vtpt

Phương trình:

\(3\left(x+1\right)+2\left(y-1\right)=0\Leftrightarrow3x+2y+1=0\)

13 tháng 4 2019

Đáp án B

Do AB và BC cắt nhau tại B nên toa độ điểm B là nghiệm hệ phương trình

Do đó: B( 2; -1)

Tương tự: tọa độ điểm C( 1; 9)

PT các đường phân giác góc A là:

Đặt T1(x; y) = 2x- 6y+ 7 và T2= 12x+ 4y-3  ta có:

T1(B). T1(C) < 0 và T2(B) T2(C) >0.

Suy ra B và C nằm khác phía so với đường thẳng 2x-6y+7= 0 và cùng phía so với đường thẳng: 12x+ 4y- 3= 0.

Vậy phương trình đường phân giác trong góc A là: 2x- 6y+ 7= 0.

\(\Leftrightarrow\left(\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}+...+\dfrac{1}{19}-\dfrac{1}{21}\right)\cdot462-y=19\)

\(\Leftrightarrow20-y=19\)

hay y=1

a: \(\Leftrightarrow x-2\in\left\{1;-1;19;-19\right\}\)

hay \(x\in\left\{3;1;21;-17\right\}\)

b: \(\Leftrightarrow2x+3\in\left\{1;-1;3;-3\right\}\)(vì x là số nguyên nên 2x+3 là số lẻ)

hay \(x\in\left\{-1;-2;0;-3\right\}\)

c: \(\Leftrightarrow x+1+4⋮x+1\)

\(\Leftrightarrow x+1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(x\in\left\{0;-2;1;-3;3;-5\right\}\)

d: \(\Leftrightarrow x+1⋮x+4\)

\(\Leftrightarrow x+4\in\left\{1;-1;3;-3\right\}\)

hay \(x\in\left\{-3;-5;-1;-7\right\}\)

           1.Khẳng định nào sau đây là đúng?A. Điểm đối xứng của A(–2; 1) qua gốc tọa độ O là (1; –2)B. Điểm đối xứng của A(–2; 1) qua trục tung là (2; 1)C. Điểm đối xứng của A(–2; 1) qua trục hoành là (–2; –1)D. Điểm đối xứng của A(–2; 1) qua đường phân giác của góc xOy là (1; –2)                                                                                2.Cho các điểm M(m; -2), N(1; 4), P(2; 3). Giá...
Đọc tiếp

           1.Khẳng định nào sau đây là đúng?

  • A. Điểm đối xứng của A(–2; 1) qua gốc tọa độ O là (1; –2)
  • B. Điểm đối xứng của A(–2; 1) qua trục tung là (2; 1)
  • C. Điểm đối xứng của A(–2; 1) qua trục hoành là (–2; –1)
  • D. Điểm đối xứng của A(–2; 1) qua đường phân giác của góc xOy là (1; –2)                                                                                2.Cho các điểm M(m; -2), N(1; 4), P(2; 3). Giá trị của m để M, N, P thẳng hành là:
  • A. m = – 7
  • B. m = – 5
  • C. m= D. m = 5                                                                                                                                                                                    3.Cho vectơ \underset{a}{\rightarrow}\underset{b}{\rightarrow} và các số thực m, n, k. Khẳng định nào sau đây là đúng?
  • A. Từ đẳng thức m\underset{a}{\rightarrow} = n\underset{a}{\rightarrow} suy ra m = n
  • B. Từ đẳng thức k\underset{a}{\rightarrow} = k\underset{b}{\rightarrow} luôn suy ra \underset{a}{\rightarrow} = \underset{b}{\rightarrow}
  • C. Từ đẳng thức k\underset{a}{\rightarrow} = k\underset{b}{\rightarrow} luôn suy ra k = 0
  • D. Từ đẳng thức m\underset{a}{\rightarrow} = n\underset{a}{\rightarrow} và \underset{a}{\rightarrow}≠0→ suy ra m = n
0
AH
Akai Haruma
Giáo viên
24 tháng 11 2018

Lời giải:

HPT \(\Leftrightarrow \left\{\begin{matrix} \frac{12}{x-1}-\frac{20}{y+4}=16\\ \frac{12}{x-1}-\frac{3}{y+1}=\frac{57}{5}\end{matrix}\right.\)

\(\Rightarrow \frac{-20}{y+4}+\frac{3}{y+1}=\frac{23}{5}\)

\(\Leftrightarrow \frac{3(y+4)-20(y+1)}{(y+1)(y+4)}=\frac{23}{5}\)

\(\Leftrightarrow \frac{-8-17y}{(y+1)(y+4)}=\frac{23}{5}\)

\(\Rightarrow 23(y+1)(y+4)+5(17y+8)=0\)

\(\Leftrightarrow 23y^2+250y+132=0\)

\(\Rightarrow y=\frac{-125\pm \sqrt{12589}}{23}\). Thay vào tìm $x$

P/s: Có vẻ bạn viết sai đề, chứ số quá xấu.