K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2021

em đang cần gấp các cao nhân ơi

NV
21 tháng 7 2021

\(I=-\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)+2021\)

\(=-\left(x^2+5x-6\right)\left(x^2+5x+6\right)+2021\)

\(=-\left[\left(x^2+5x\right)^2-6^2\right]+2021\)

\(=-\left(x^2+5x\right)^2+2057\le2057\)

\(I_{max}=2057\) khi \(x^2+5x=0\)

\(K=-\left(x-2\right)\left(x-7\right)\left(x-5\right)\left(x-4\right)+102\)

\(=-\left(x^2-9x+14\right)\left(x^2-9x+20\right)+102\)

\(=-\left(x^2-9x+14\right)\left(x^2+9x+14+6\right)+102\)

\(=-\left[\left(x^2-9x+14\right)^2+6\left(x^2-9x+14\right)\right]+102\)

\(=-\left[\left(x^2-9x+14\right)+6\left(x^2-9x+14\right)+9-9\right]+102\)

\(=-\left(x^2-9x+17\right)^2+111\le111\)

\(K_{max}=111\) khi \(x^2-9x+17=0\)

NV
21 tháng 7 2021

\(M=-\left(4x^2+4x+1\right)\left(16x^2+16x+3\right)-11\)

Đặt \(4x^2+4x+1=t\Rightarrow16x^2+16x=4t-4\)

\(\Rightarrow M=-t\left(4t-4+3\right)-11\)

\(M=-4t^2+t-11\)

\(M=-4\left(t-\dfrac{1}{8}\right)^2-\dfrac{175}{16}\le-\dfrac{175}{16}\)

\(M_{max}=-\dfrac{175}{16}\) khi \(t=\dfrac{1}{8}\)

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang

13 tháng 8 2020

A = (2x - 3)(x2 + 4x) - 2(x3 + 2x + 6)

   = 2x(x2 + 4x) - 3(x2 + 4x) - 2x3 - 4x - 12

  = 2x3 + 8x2 - 3x2 - 12x - 2x3 - 4x - 12

  = 5x2 - 16x - 12

Thay x = 4 vào biểu thức trên ta có : 5.42 - 16.4 - 12 = 4

B = x(x2 + 7x) - (x + 9)(x2 + 17)

   = x3 + 7x2 - x(x2 + 17) - 9(x2 + 17)

  = x3 + 7x2 - x3 - 17x - 9x2 - 153

  = -2x2 - 17x - 153 

Thay x = 5 vào biểu thức trên ta có : -2.52 - 17.5  - 153 = -50 - 85 - 153 = -288

13 tháng 8 2020

A = ( 2x - 3 )( x2 + 4x ) - 2( x3 + 2x + 6 )

A = 2x3 + 8x2 - 3x2 - 12x - 2x3 - 4x - 12

A = 5x2 - 16x - 12

Thế A = 4 ta được :

A = 5.42 - 16.4 - 12 = 4

B = x( x2 + 7x ) - ( x + 9 )( x2 + 17 )

B = x3 + 7x2 - ( x3 + 17x + 9x2 + 153 )

B = x3 + 7x2 - x3 - 17x - 9x2 - 153

B = -2x2 - 17x - 153

Thế x = 5 ta được :

B = -2.52 - 17.5 - 153 = -288

27 tháng 10 2023

a,

\(A=4(x-2)(x+1)+(2x-4)^2+(x+1)^2\\=[2(x-2)]^2+2\cdot2(x-2)(x+1)+(x+1)^2\\=[2(x-2)+(x+1)]^2\\=(2x-4+x+1)^2\\=(3x-3)^2\)

Thay $x=\dfrac12$ vào $A$, ta được:

\(A=\Bigg(3\cdot\dfrac12-3\Bigg)^2=\Bigg(\dfrac{-3}{2}\Bigg)^2=\dfrac94\)

Vậy $A=\dfrac94$ khi $x=\dfrac12$.

b,

\(B=x^9-x^7-x^6-x^5+x^4+x^3+x^2-1\\=(x^9-1)-(x^7-x^4)-(x^6-x^3)-(x^5-x^2)\\=[(x^3)^3-1]-x^4(x^3-1)-x^3(x^3-1)-x^2(x^3-1)\\=(x^3-1)(x^6+x^3+1)-x^4(x^3-1)-x^3(x^3-1)-x^2(x^3-1)\\=(x^3-1)(x^6+x^3+1-x^4-x^3-x^2)\\=(x^3-1)(x^6-x^4-x^2+1)\)

Thay $x=1$ vào $B$, ta được:

\(B=(1^3-1)(1^6-1^4-1^2+1)=0\)

Vậy $B=0$ khi $x=1$.

$Toru$

21 tháng 10 2023

loading...  loading...  loading...  

Bài 1: 

a: \(\left(\dfrac{1}{3}x+2\right)\left(3x-6\right)\)

\(=x^2-3x+6x-12\)

\(=x^2+3x-12\)

b: \(\left(x+3\right)\left(x^2-3x+9\right)=x^3+27\)

c: \(\left(-2xy+3\right)\left(xy+1\right)\)

\(=-2x^2y^2-2xy+3xy+3\)

\(=-2x^2y^2+xy+3\)

d: \(x\left(xy-1\right)\left(xy+1\right)\)

\(=x\left(x^2y^2-1\right)\)

\(=x^3y^2-x\)

Bài 2: 

a: Ta có: \(M=\left(3x+2\right)\left(9x^2-6x+4\right)\)

\(=27x^3+8\)

\(=27\cdot\dfrac{1}{27}+8=9\)

b: Ta có: \(N=\left(5x-2y\right)\left(25x^2+10xy+4y^2\right)\)

\(=125x^3-8y^3\)

\(=125\cdot\dfrac{1}{125}-8\cdot\dfrac{1}{8}\)

=0

Bài 4: Tam giác ABC vuông tại A, đường cao AH. I, K lần lượt là hình chiếu của H trên AB, AC. M là trung điểm của BC. Chứng minh rằng: AM vuông góc với IKBài 5: Hình thang vuông ABCD, góc A= góc B= 90 độ, AB= AD= CD/2. E thuộc AB; EF vuông góc với DE ( F thuộc DC ). Chứng minh rằng: ED= EFBài 1:1) Tính nhanh:d) D= 100^2+ 103^2+ 105^2+ 94^2- ( 101^2+ 98^2+ 96^2+ 107^2 )2)Rút gọn và tính giá trị của biểu thức:b)...
Đọc tiếp

Bài 4: Tam giác ABC vuông tại A, đường cao AH. I, K lần lượt là hình chiếu của H trên AB, AC. M là trung điểm của BC. Chứng minh rằng: AM vuông góc với IK
Bài 5: Hình thang vuông ABCD, góc A= góc B= 90 độ, AB= AD= CD/2. E thuộc AB; EF vuông góc với DE ( F thuộc DC ). Chứng minh rằng: ED= EF

Bài 1:
1) Tính nhanh:
d) D= 100^2+ 103^2+ 105^2+ 94^2- ( 101^2+ 98^2+ 96^2+ 107^2 )
2)Rút gọn và tính giá trị của biểu thức:
b) (x-2)^3-(x-2)(x^2+2x+4)+6(x-2)(x+2)-x(x-1) tại x= 101
c) (x+1)^3-(x+3)(x^2-3x+9)+3(2x-1)^2 tại x= -2
Bài 11: Xác định đa thức f(x) biết f(x) chia hết cho (x-2) dư 5, f(x) chia cho (x-3) dư 7, f(x) chia cho (x-3)(x-2) được thương x^2-1 và có dư
Bài 12: Tìm x tự nhiên sao cho:
a) Giá trị biểu thức x^3+2x-x^2+7 chia hết cho giá trị biểu thức (x^2+1)
b) Giá trị đa thức ( 2x^4-3x^3-x^2+5x-4) chia hết cho giá trị đa thức (x-3)
Bài 13: Tìm x thuộc Z để giá trị biểu thức 8x^2-4x+1 chia hết cho giá trị biểu thức 2x+1
Bài 14: Chứng minh rằng:
a) a^3-a chia hết cho 24a với a là số nguyên tố lớn hơn 3
b) n(2n+1)(7n+1) chia hết cho 6 với mọi n thuộc Z
c) n^3-13n chia hết cho 6 với mọi n thuộc Z
d) a^5-a chia hết cho 30 với mọi a thuộc Z

0
6 tháng 8 2020

a, \(A=\left(-5x+4\right)\left(3x-2\right)+\left(-2x+3\right)\left(x-2\right)\)

\(=-15x^2+10x+12x-8=-15x^2+22x-8\)

Thay x = -2 vào biểu thức ta có : \(-15\left(-2\right)^2+22\left(-2\right)-8\)

\(=-15.4-44-8=-112\)

b, \(B=\left(x-9\right)\left(2x+3\right)-2\left(x+7\right)\left(x-5\right)\)

\(=2x^2+3x-18x-27=2x^2-15x-27\)

Thay x = -1/2 vào biểu thức ta có : \(2\left(-\frac{1}{2}\right)^2-15\left(-\frac{1}{2}\right)-27\)

\(=2.\frac{1}{4}+\frac{15}{2}-27=\frac{11}{2}+\frac{15}{2}+27=40\)

6 tháng 8 2020

Bài làm:

a) \(A=\left(-5x+4\right)\left(3x-2\right)+\left(-2x+3\right)\left(x-2\right)\)

\(A=-15x^2+22x-8-2x^2+7x-6\)

\(A=-17x^2+29x-14\)

Thay x = -2 vào ta được:

\(A=-17.\left(-2\right)^2+29.\left(-2\right)-14\)

\(A=-68-58-14\)

\(A=-140\)

b) \(B=\left(x-9\right)\left(2x+3\right)-2\left(x+7\right)\left(x-5\right)\)

\(B=2x^2-15x-27-2\left(x^2+2x-35\right)\)

\(B=2x^2-15x-27-2x^2-4x+70\)

\(B=-19x+43\)

Thay x = -1/2 vào B ta được:

\(B=-19.\left(-\frac{1}{2}\right)+43=\frac{19}{2}+43=\frac{105}{2}\)