Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\dfrac{3}{2}\sqrt{12}+\sqrt{75}-\sqrt{300}+\sqrt{27}\)
\(=3\sqrt{3}+5\sqrt{3}-10\sqrt{3}+3\sqrt{3}\)
\(=\sqrt{3}\)
b) Ta có: \(\sqrt{14-6\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)
\(=3-\sqrt{5}+\sqrt{5}-2\)
=1
3:
b: x1^2+x2^2=12
=>(x1+x2)^2-2x1x2=12
=>(2m+2)^2-4m=12
=>4m^2+4m+4=12
=>m^2+m+1=3
=>(m+2)(m-1)=0
=>m=1;m=-2
2:
b: =>|x1|-|x2|=m+3-|-1|=m+2
=>x1^2+x2^2-2|x1x2|=m+2
=>(x1+x2)^2-2x1x2-2|x1x2|=m+2
=>(2m)^2-2(-1)-2|-1|=m+2
=>4m^2-m-2=0
=>m=(1+căn 33)/8; m=(1-căn 33)/8
\(\text{Δ}=\left(-3\right)^2-4\cdot\left(2m+1\right)\)
=9-8m-4=-8m+5
Để phương trình có nghiệm kép thì -8m+5=0
hay m=5/8
Pt trở thành \(x^2-3x+\dfrac{9}{4}=0\)
hay x=3/2
Bài 2:
a: Gọi (d): y=ax+b là phương trìnhđường thẳng cần tìm
Vì (d) đi qua A(1;-2) và B(2;1) nên ta có hệ:
a+b=-2 và 2a+b=1
=>a=3 và b=-5
b: Gọi (d): y=ax+b là phương trìnhđường thẳng cần tìm
Vì (d) có hệ số góc là 2 nên a=2
=>y=2x+b
Thay x=1 và y=5 vào (d), ta được:
b+2=5
=>b=3
c: Gọi (d): y=ax+b là phương trìnhđường thẳng cần tìm
Vì (d)//y=4x+3
nên a=4
=>y=4x+b
Thay x=-1 và y=8 vào (d), ta được:
b-4=8
=>b=12
d: Gọi (d): y=ax+b là phương trìnhđường thẳng cần tìm
Vì (d)//y=-x+5
nên a=-1
=>y=-x+b
Thay x=2 và y=0 vào (d), ta được:
b-2=0
=>b=2
Bạn nên tách lẻ các bài ra post riêng. Đăng thế này chiếm diện tích, khó quan sát => mọi người dễ bỏ qua bài của bạn.
a: Xét ΔSBM và ΔSNB có
\(\widehat{SBM}=\widehat{SNB}\)
\(\widehat{BSM}\) chung
Do đó: ΔSBM\(\sim\)ΔSNB
Suy ra: SB/SN=SM/SB
hay \(SB^2=SM\cdot SN\)
b: Xét (O) có
SA là tiếp tuyến
SB là tiếp tuyến
Do đó: SA=SB
mà OA=OB
nên SO là đường trung trực của AB
=>SO⊥AB
Xét ΔOBS vuông tại B có BH là đường cao
nên \(SH\cdot SO=SB^2=SM\cdot SN\)
ĐKXĐ a>0 \(a\ne4,a\ne\dfrac{1}{9}\)\(P=\left(\dfrac{a-\sqrt{a}-2\sqrt{a}+2}{3a-6\sqrt{a}-\sqrt{a}+2}-\dfrac{\sqrt{a}-3}{3a-9\sqrt{a}+\sqrt{a}-3}+\dfrac{8\sqrt{a}}{\left(3\sqrt{a}-1\right)\left(3\sqrt{a}+1\right)}\right):\left(\dfrac{a+\sqrt{a}}{3\sqrt{a}+1}\right)\)bạn phân tích thành nhân tử và rút gọn cho mẫu thì nó bằng
\(\left(\dfrac{\sqrt{a}-1}{3\sqrt{a-1}}-\dfrac{1}{3\sqrt{a}+1}+\dfrac{8\sqrt{a}}{\left(3\sqrt{a}-1\right)\left(3\sqrt{a}+1\right)}\right).\dfrac{3\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}+1\right)}=\dfrac{3a+3\sqrt{a}}{\left(3\sqrt{a}-1\right)\left(3\sqrt{a}+1\right)}.\dfrac{3\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}+1\right)}=\dfrac{3\sqrt{a}\left(\sqrt{a}+1\right)}{\left(3\sqrt{a}+1\right)\left(3\sqrt{a}-1\right)}.\dfrac{3\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}+1\right)}=\dfrac{3}{3\sqrt{a}-1}\)
để P>\(\dfrac{3}{\left|1-3\sqrt{5}\right|}\)thì \(\dfrac{3}{3\sqrt{a}-1}>\dfrac{3}{3\sqrt{5}-1}\)(vì có dấu giá trị tuyệt đối mà có 1<3\(\sqrt{5}\) nên phải đổi dấu khi ra khỏi ngoặc nhé
=>\(\dfrac{1}{3\sqrt{a}-1}>\dfrac{1}{3\sqrt{5}-1}=>3\sqrt{a}-1< 3\sqrt{5}-1< =>\sqrt{a}< \sqrt{5}< =>a< 25\)
mà ngta muốn gtrij nguyên lớn nhất của a vậy a =24