\(\in\) Z để...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2016

a)Vì x2 \(\ge\) 0 với mọi x

=>-x2 \(\le\) 0 với mọi x

=>100-x2 \(\le\) 100 với mọi x

=>max A=100

Dấu "=" xảy ra:<=>x=0

Vậy..........

b)B lớn nhất<=>|x+4|+2 nhỏ nhất

Vì |x+4| \(\ge\) 0 với mọi x

=>|x+4|+2 \(\ge\) 2 với mọi x

=>GTNN của |x+4|+2 là 2

Khi đó \(B\le\frac{4}{2}=2\)

=>max B=2

Dấu "=" xảy ra<=>x+4=0<=>x=-4

Vậy............

2 tháng 5 2018

co phai lam het ko

2 tháng 5 2018

bạn làm được câu nào thì bạn làm giúp mk với nhé!

cảm ơn bạn nhiều

19 tháng 8 2020

a. Vì A thuộc Z 

\(\Rightarrow x-2\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow x\in\left\{-3;1;3;7\right\}\)( tm x thuộc Z )

b. Ta có : \(B=\frac{x+2}{x-3}=\frac{x-3+5}{x-3}=1+\frac{5}{x-3}\)

Vì B thuộc Z nên 5 / x - 3 thuộc Z

\(\Rightarrow x-3\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow x\in\left\{-2;2;4;8\right\}\)( tm x thuộc Z )

c. Ta có : \(C=\frac{x^2-x}{x+1}=\frac{x^2+x-2x+2-2}{x+1}=\frac{x\left(x+1\right)-2x+2-2}{x+1}\)

\(=x-2-\frac{2}{x+1}\)

Vi C thuộc Z nên 2 / x + 1 thuộc Z

\(\Rightarrow x+1\in\left\{-2;-1;1;2\right\}\)

\(\Rightarrow x\in\left\{-3;-2;0;1\right\}\) ( tm x thuộc Z )

20 tháng 2 2020

a, để A nguyên

=> 7 - x chia hết cho x - 5

=> 5 - x + 2 chia hết cho x - 5

=> -(x - 5) + 2 chia hết cho x - 5

=> 2 chia hết cho x - 5

=> x - 5 thuộc Ư(2)

=> x - 5 thuộc {-1;1-2;2}

=> x thuộc {4; 6; 3; 7}

29 tháng 4 2020

ko bt nha ko tên

29 tháng 4 2020

@phan thi ly na bạn ko biết comment làm j dị

27 tháng 4 2019

ai giúp đi

27 tháng 4 2019

a ,Để A có giá trị nhỏ nhất thì x^4 có giá trị nhỏ nhất 

=>x^4=0

=>x=0

b,để B có giá trị lớn nhất thì /x+4/+2 có giá trị nhỏ nhất

=>/x+4/+2=1

=>/x+4/=-1(vô lý)

=>x ko tồn tại

27 tháng 4 2019

a) Để A lớn nhất thì 100-x4 lớn nhất.

Để 100-x4 lớn nhất thì x4 phải nhỏ nhất.

Nhận thấy x4 là lũy thừa có số mũ chẵn \(\Rightarrow\) nếu x<0 thì x4>0

Mà Min x4=0 ( với x=0) vì ko xảy ra trường hợp x4<0 ( chứng minh trên)

Vậy: x=0

b) Để B lớn nhất thì |x+4|+2 nhỏ nhất.

Dễ nhận thấy |x+4|+2 \(\ge2\) ( Vì |x+4| \(\ge0\))

\(\Rightarrow Min\left|x+4\right|+2=2\)

\(\Rightarrow\left|x+4\right|=0\)

\(\Rightarrow x+4=0\Rightarrow x=\left(-4\right)\)

Vậy: x=(-4)

25 tháng 4 2018

Bài 1

2.|x+1|-3=5

2.|x+1|   =8

|x+1|     =4

=>x+1=4 hoặc x+1=-4

<=>x= 3 hoặc -5

Bài 3

     A=2/n-1

Để A có giá trị nguyên thì n là

2 phải chia hết cho n-1

U(2)={1,2,-1,-2}

Vậy A là số nguyên khi n=2;3;0;-1

k mk nha. Chúc bạn học giỏi

Thank you

25 tháng 4 2018

bài 1 :

\(2\cdot|x+1|-3=5\)

\(2\cdot|x+1|=5+3\)

\(2\cdot|x+1|=8\)

\(|x+1|=8\div2\)

\(|x+1|=4\)

\(x=4-3\)

\(x=3\Rightarrow|x|=3\)

bài 2 : có 2 trường hợp để \(n\in Z\)là \(A=2\)và \(A=4\)

TH1:

 \(2=\frac{n+1}{n-2}\Rightarrow2=\frac{6}{3}\left(n\in Z\right)\)

\(2=\frac{n+1}{n-2}\Rightarrow2=\frac{6-1}{3+2}=5\)

\(\Rightarrow n=5\)

TH2

\(4=\frac{n+1}{n-2}\Rightarrow4=\frac{4}{1}\left(n\in Z\right)\)

\(\Rightarrow4=\frac{4-1}{1+2}=3\)

\(\Rightarrow n=3\)

\(n\in\left\{5;3\right\}\left(n\in Z\right)\)

Bài 3  có 2 trường hợp là \(A=1\)và \(A=2\)

TH1:

\(1=\frac{2}{n-1}\Rightarrow1=\frac{2}{2}\)

\(1=\frac{2}{2+1}=3\)

\(\Rightarrow n=3\)

TH2 : 

\(2=\frac{2}{n-1}\Rightarrow2=\frac{2}{1}\)

\(2=\frac{2}{1+1}=2\)

\(\Rightarrow n=2\)

vậy \(\Rightarrow n\in\left\{3;2\right\}\)

2 tháng 5 2017

a) Với mọi x nguyên ta luôn có:  \(\left(x-1\right)^2\ge0\)

Dấu "=" xảy ra  \(\Leftrightarrow\)  \(\left(x-1\right)^2=0\)  \(\Leftrightarrow\)  \(x-1=0\)  \(\Leftrightarrow\)  x = 1.

Do đó \(A=\left(x-1\right)^2+2008\ge0+2008=2008\)

Vậy GTNN của A là 2008 tại x = 1.

b) Với mọi x nguyên ta luôn có \(\left|x+4\right|\ge0\)

.Dấu "=" xảy ra  \(\Leftrightarrow\)  \(\left|x+4\right|=0\)  \(\Leftrightarrow\)  \(x+4=0\)  \(\Leftrightarrow\)  x = -4.

Do đó \(B=\left|x+4\right|+1996\ge0+1996=1996\)

Vậy GTNN của B là 1996 tại x = -4.

2 tháng 5 2017

c)  \(C=\frac{5}{x-2}\) nhỏ nhất  \(\Leftrightarrow\)  x - 2 lớn nhất, mà x nguyên nên ko tìm đc giá trị của x

bn xem lại đề câu c, d được ko

chắc đề là: "Tìm x nguyên để   \(C=\frac{5}{x-2}\) đạt giá trị nguyên nhỏ nhất"