Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có:A = 2n-1 / n-3 = 2n-6+6-1 / n-3 = 2(n-3)+5 / n-3 = 2(n-3)/n-3+ 5/ n-3= 2+ (5/ n-3)
Để A nguyên thì 2+5/n-3 nguyên => 5/n-3 nguyên hay 5 chia hết cho n-3
=>n-3 thuộc ước của 5
=> n-3 thuộc {5, -5,1,-1}
=> n thuộc { 8, -2, 4, 2}
b. Để A có GTLN thì 5/n-3 có GTLN=> n-3 là số nguyên dương nhỏ nhất=> n - 3 = 1 => n = 1+3 = 4
=> A = 2 + 5 = 7
vậy GTLN của A = 7 khi n = 4
a) Để A có giá trị là số nguyên
Thì (2n—1) chia hết cho (n—3)
==> [2(n—3)+4) chia hết cho (n—3)
Vì (n—3) chia hết cho (n—3)
Nên (2+4) chia hết cho (n—3)
==> 6 chia hết cho (n—3)
==> (n—3) € Ư(6)
(n—3) €{1;-1;2;-2;3;-3;6;-6}
TH1: n—3=1
n=1+3
n=4
TH2: n—3=-1
n=-1+3
n=2
TH3: n—3=2
n=2+3
n=5
TH4: n—3=-2
n=-2+3
n=1
TH5:n—3=3
n=3+3
n=6
TH6: n—3=—3
n=-3+3
n=0
TH7: n—3=6
n=6+3
n=9
TH8: n—3=-6
n=-6+3
n=-3
Mình chỉ biết 1 câu thôi nha bạn
Gọi số đo của các góc A, B, C lần lượt là a;b;c (a;b;c > 0)
Vỉ các góc đó lần lượt tỉ lệ với các số 2;3;5 nên
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\) và a + b + c = 180o
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{180^o}{10}=18^o\)
\(\Rightarrow\hept{\begin{cases}a=18^o.2=36^o\\b=18^o.3=54^o\\c=18^o.5=90^o\end{cases}}\)
Vậy góc A = 36o; góc B = 54o; góc C = 90o
a) Vì x và y là hai đại lượng tỉ lệ nghịch nên \(y=\frac{k}{x}\left(k\ne0\right)\)
Khi x = -4 thì y = 8 => \(8=\frac{k}{-4}\)=> k = 8.(-4) = -32
b) Biểu diễn : \(y=\frac{-32}{x}\)
c) Khi x = -1 thì \(y=\frac{-32}{-1}=32\)
Khi x = 16 thì \(y=\frac{-32}{16}=-2\)
Đặt \(\left\{{}\begin{matrix}n+1=a^2\\n+6=b^2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}n=a^2-1\\n=b^2-6\end{matrix}\right.\Rightarrow a^2-1=b^2-6\)
\(\Rightarrow a^2-b^2=-6+1=-5\\ \Rightarrow\left(a-b\right)\left(a+b\right)=-5\cdot1=-1\cdot5\)
Vì \(n+1< n+6\Rightarrow a< b\Rightarrow a-b< a+b\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a-b=-1\\a+b=5\end{matrix}\right.\\\left\{{}\begin{matrix}a-b=-5\\a+b=1\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\\\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\end{matrix}\right.\Rightarrow n=3\)