Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(t,=\dfrac{3^{64}\cdot7^{24}}{7^{23}\cdot9^{66}}=\dfrac{7}{3^2}=\dfrac{7}{9}\\ u,=\dfrac{5^3\cdot3^4\cdot2^5}{5^2\cdot3^3\cdot2^4}=5\cdot3\cdot2=30\\ v,=\dfrac{3^6\cdot2^{15}}{2^6\cdot3^6\cdot2^8}=2\)
Kéo dài AB, AB và FC cắt nhau tại H
Vì AB vuông với AC nên BAC = 90 độ
Ta có: BAC + CAH = 180 độ( kề bù)
=> 90 + CAH = 180
=> CAH = 180 - 90
=> CAH = 90
Áp dụng tính chất tổng 3 góc của 1 tam giác ta có:
HAC + ACH + AHC = 180
=> 90 + 40 + AHC = 180
=> 130 + AHC = 180
=> AHC = 180 - 130
= 50
Suy ra góc AHC = EAB = 50 độ
mà 2 góc này ở vị trí so le trong
=> EB // FC → ĐPCM
a) Xét ΔMNI và ΔMPI có
MN=MP(do ΔMNP cân tại M)
NI=PI(do I là trung điểm của NP)
MI là cạnh chung
Do đó: ΔMNI=ΔMPI(c-c-c)
b) Vì ΔMNI = ΔMPI nên
=> MI là tia phân giác góc NMP(cmt)
c)ta có:
+)MI là tia phân giác góc NMP(cmt)
+)MI kề bù với NPI(gt)
=>MI vuông góc với NP
vậy A) ΔMNI=ΔMPI
B)MI là tia phân giác góc NMP
C)MI vuông góc với NP
nếu theo đề bài thì x--->0 2014/IxI cực lớn đến vô cùng.
vậy có thể đề là A=2014/(IxI+2015) nếu vậy A lớn nhất khi (IxI+2015) nhỏ nhất => x=0
Ta có \(abc=13ac\)
\(\Rightarrow\frac{abc}{ac}=13\)
\(\Rightarrow b=13\)
Thế vào đề bài, ta có:
\(13ac=13ac\)
Vậy ac có thể là bất kì số nào
Suy ra ac không thể xác định
Kết luận: abc có thể là bất kì số nào (biết b = 13)
Bài 6:
a) Xét ΔBAC vuông tại A và ΔBAD vuông tại A có
BA chung
AC=AD(gt)
Do đó: ΔBAC=ΔBAD(hai cạnh góc vuông)
Suy ra: \(\widehat{CBA}=\widehat{DBA}\)(hai góc tương ứng)
hay BA là tia phân giác của \(\widehat{DBC}\)
\(=\dfrac{11}{125}-\left(\dfrac{11}{18}-\dfrac{4}{9}\right)-\left(\dfrac{5}{7}-\dfrac{17}{14}\right)\\ =\dfrac{11}{125}-\dfrac{1}{3}+\dfrac{1}{2}\\ =\dfrac{11}{125}+\dfrac{1}{6}=\dfrac{191}{750}\)